April 27, 2009 (trg no. 7115)

Luis Lodrigueza
ORANGE COUNTY HEALTH CARE AGENCY
Environmental Health Division
1241 East Dyer Road, Suite 120
Santa Ana, CA 92705-5611

FULLERTON BUSINESS PARK NORTH

(FORMER OCHCA #94IC29)

1551 EAST ORANGETHORPE AVENUE

FULLERTON, CALIFORNIA

REYNOLDS GROUP

a California corporation

MAY 01 2009

ENVIRONMENTAL HLTH

SUBJECT:

SOIL VAPOR VERIFICATION SAMPLING REPORT AND

REQUEST FOR CLOSURE

Dear Mr. Lodrigueza,

In March 2009, The Reynolds Group (TRG) performed soil vapor verification sampling at Fullerton Business Park North, 1551 East Orangethorpe Avenue in Fullerton, California (the Site, see Figure 1 – Site Location Map) after a period of active soil vapor extraction. The work was performed according to TRG's February 4, 2009, "Revised Workplan for Verification Sampling" and approved by the Orange County Health Care Agency (OCHCA) in a letter dated February 10, 2009 (see Attachment A).

1.0 EXECUTIVE SUMMARY

As detailed in this report, TRG performed verification sampling at the subject Site to verify that 11 months of soil vapor extraction (SVE) at the Site successfully removed chlorinated hydrocarbons in subsurface soils, primarily tetrachloroethene (PCE) and trichloroethene (TCE), to levels low enough for low risk closure consideration.

Results of the verification sampling indicate that remedial efforts reduced PCE and TCE vapor concentrations significantly in the shallow soils at the Site, especially in the sub-slab

Luis Lodrigueza, OCHCA

Verification Sampling Report and Request for Closure

1551 East Orangethorpe Rd., Fullerton, CA

April 27, 2009

Page 2

and at 5 feet below ground surface (ft bgs). Concentrations have been also been notably

reduced, to a lesser degree, in the deeper soils of the northern area of the Site near the

adjacent Former Johnson Controls Battery property (Johnson Controls). Johnson Controls is

known to have released chlorinated compounds (including PCE and TCE) into the

subsurface.

The significant reduction in PCE and TCE in the shallow subsurface suggests that the Site

building areas have remediated to low enough concentrations for commercial/industrial use

low risk closure consideration and, thus, TRG requests that OCHCA evaluate results of this

investigation for indoor human health risk analysis and case closure.

2.0 SITE SETTING

The Site is situated in an industrial area of Fullerton and covers approximately 4.6 acres.

The surrounding area has been used for industrial purposes since the 1950's, preceded by

agricultural use.

Developed with the existing 108,300 square-foot single story manufacturing/warehouse

building in 1956, the Site is completely paved with reinforced concrete inside the building

and asphalt and concrete outside. The warehouse/manufacturing areas of the building are

well ventilated, and include 14 to 20 foot high ceilings and several entryways.

Arnold Engineering Company, a stamping and milling facility, occupied the Site between

1960 through 1985. The company's operations used various volatile organic compounds

(VOCs), including PCE and TCE. The Site was also used for other manufacturing activities

and as a storage warehouse.

(

3.0 SITE GEOLOGY AND HYDROLOGY

The Site is located in the Coastal Plain of Orange County in a relatively flat topography at an elevation of approximately 177 feet above mean sea level. The area topography slopes very gently toward the west southwest.

The Coastal Plain is bound by the Puente Hills to the north, the Santa Ana Mountains to the east, the San Joaquin Hills to the south, and the Pacific Ocean to the west, and is constituted of alluvium sediments. Soil types beneath the Site consist primarily of interbedded layers of silts, clays, and fine sands in the upper 50 feet. Deeper soils (> 50 ft bgs) are comprised of fine to medium, well-sorted sands.

Groundwater beneath the Site exists at approximately 115 to 125 ft bgs and flows in a westerly direction.

4.0 SUMMARY OF HISTORICAL ENVIRONMENTAL WORK

4.1 Regional Environmental Work

In 2004, the subject Site and several potential responsible parties (PRPs) in the area were identified by the Orange County Water District (OCWD), the purveyor of domestic water in Orange County, as potential contributors to a regional VOC-impacted groundwater plume. The OCWD subsequently filed a lawsuit against the PRPs.

The former Site owner, The Alan and Kay Needle Trust, was named in a lawsuit filed by the OCWD (Case No. 04 CC 00715). The lawsuit resulted from the Santa Ana Regional Water Quality Control Board's assertions of alleged groundwater contamination in the region. On

Luis Lodrigueza, OCHCA

Verification Sampling Report and Request for Closure

1551 East Orangethorpe Rd., Fullerton, CA

April 27, 2009

Page 4

or about May 2, 2007, The Alan and Kay Needle Trust entered into a Good Faith Settlement

Agreement with the OCWD. The lawsuit is now resolved as to The Alan and Kay Needle

Trust (former Site owner) and the current Site owner, Mr. Dominick Baione of Universal

Mold Extrusion Company.

4.2 Former Johnson Controls Battery Property

The OCWD lawsuit also identified the Former Johnson Controls property, located adjoining

north of the subject Site at 1550 E. Kimberly Avenue, as a PRP for the regional VOC impact.

Shallow soils at Johnson Controls were discovered to be impacted with lead, arsenic,

chlorinated VOCs (including PCE and TCE), and petroleum hydrocarbons (ref. JCI Fullerton

Corrective Measures Completion Report, dated May 2007). The PCE and TCE impact at

Johnson Controls was detected primarily in the southeastern portion of their property,

northeast of the subject Site.

To address the PCE and TCE impacted soils at Johnson Controls, soil vapor extraction

(SVE) of the deeper soils was performed from November 2006 through September 2007,

with nested extraction wells screened at depths ranging from 25 to 47 ft bgs. More shallow

soils were excavated. The Department of Toxic Substance Control (DTSC) later determined

that corrective action had been completed at Johnson Controls for shallow and deep soils, as

detailed in DTSC letters dated May 22 and September 20, 2007, respectively.

4.3 Subject Site Environmental Work

1994 to 1995 Assessment and Remediation

During removal of two clarifiers located on the eastern end of the Site in 1994 by Converse

Consultants, concentrations of PCE and other constituents were detected in soil samples.

(

0

Converse concluded, following further investigation, that PCE-impacted soils existed primarily within the top 35 feet of soils in an estimated area of 1,200 square feet. Converse further stated that groundwater beneath the Site, estimated at 115 ft bgs had not been impacted (Converse 1995). SVE was proposed by Converse to remediate the PCE impacted soils at the Site.

An SVE system operated at the Site from August to November 1995. Confirmation borings performed in December 1995 showed a decrease in PCE concentrations as follows: 99% at 15 ft bgs, 87% at 20 ft bgs, and 84% at 25 ft bgs. Based on those results, Converse recommended no further action at the Site to the Orange County Health Care Agency (OCHCA). In a Case Closure letter dated December 15, 1995, OCHCA confirmed completion of remedial action at the Site and required no further investigation of the underlying groundwater, stating that the Site was not responsible for the underlying groundwater VOC impact (see Attachment D).

2007 to 2008 Subsurface Assessment

In early 2007, TRG was contracted as the Consultant for the subject Site. TRG advanced 17 soil vapor probes at the Site in March 2007 and performed an environmental screening on behalf of our Client prior to their purchasing the subject Site. PCE and TCE were detected from 5 ft bgs at maximum soil vapor concentrations of 222.2 and 115.2 micrograms per liter (ug/L), respectively. The fieldwork and results were detailed in TRG's "Results of Soil Vapor Investigation" report, dated March 19, 2007. The levels detected during the March 2007 investigation appeared to possibly exceed more recent standards.

On behalf of our Client, TRG submitted a "Request for Remedial Action Supervision", dated July 24, 2007, to OCHCA to review the March 2007 results, to provide proper regulatory oversight, and to eventually provide regulatory closure. TRG met with Luis Lodrigueza of

0

OCHCA on July 24, 2007, to discuss the case. Mr Lodrigueza directed TRG to further assess soil vapors immediately beneath the concrete slab at the Site.

On July 30, 2007, five additional soil vapor points were sampled by TRG. Maximum concentrations of 1,079.4 ug/L PCE and 710.8 ug/L TCE were detected during the investigation. Details of the work were provided in TRG's "Summary of Shallow Soil Vapor Survey and Interior Ceiling Heights" report, dated August 9, 2007. Based on the data, OCHCA determined that health risk at the Site ranges from 5.9E-0.5 to 7.9E-04. These values were considered higher than the allowable risk of one in a million (1.0E-0.6). Based on the July 2007 vapor assessment, OCHCA directed additional assessment in the warehouse to further define the lateral extent of chlorinated solvent impact, to initiate soil remediation, and to provide a basis for remedial action.

In accordance with OCHCA, TRG installed and sampled 12 temporary soil vapor probes (SV23 through SV35), six vapor extraction wells (VEW3 through VEW 6, VEW9, and VEW12), and four passive wells (PMW1 through PMW4) from October 2007 through January 2008. On February 22, 2008, TRG conducted an additional vapor sampling event to determine the effectiveness of the SVE system. TRG collected 14 soil vapor samples from eight temporary soil probes (SV26, SV27, SV29 through SV33 and VEW6). On February 25 and 27, 2008, TRG installed eight additional soil vapor extraction wells (VEW7, VEW8, VEW10, VEW11, and VEW13 through VEW16). The work was detailed in TRG's "Soil Vapor Survey and Additional Vapor Well Installation Report", dated March 14, 2008. Analytical results of the soil vapor sampling are summarized in the attached Table 2 – Summary of Soil Vapor Survey Sampling Results. The lateral extent of PCE and TCE impacted soils at the Site was determined to be located on the northeastern portion of the Site, with the highest subsurface concentrations closer to the Johnson Controls property, as shown in Figures 5, 8, and 9 of this report.

2008 - SVE Remediation

0

1

On January 4, 2008, TRG initiated SVE at the Site from wells VEW3 through VEW 6, VEW9, and VEW12. In February 2008, wells VEW7, VEW8, VEW10, VEW11, and VEW13 through VEW16 were connected to the remediation system. The SVE system consisted of a 300 cfm blower and two 1,000 lbs carbon filters in series. The wells were connected to the SVE system through an above-ground system manifold and the system operated by extracting from a different series of wells on rotational basis, focusing on hot zones to optimize the extraction and maintain a good vacuum of influence. After 11 months of soil vapor extraction at the Site, soil vapor PCE and TCE concentrations declined significantly at most locations beneath the Site building to asymptotic conditions.

A brief summary of operational detail is as follows:

Date of SVE System Start Up:	January 4, 2008
Period Covered in this Report:	Jan. 4 thru Nov. 28, 2008 (see Table 4)
Total System Running Time Since Start-Up:	7,305.5 hrs
Average Total Flow Rate @ Inlet:	161 cfm
Number of Vapor Extraction Wells:	14 at multiple depths (see Table 1)
Cumulative Pounds of PCE Removed:	49.48 lbs (see Table 4 and Figure 3)
Cumulative Pounds of TCE Removed:	6.57 lbs (see Table 4 and Figure 3)

Attachment C – "Soil Vapor Concentrations Over Time" shows the reduction in soil vapor concentrations from each individual well using SVE.

5.0 FIELDWORK

On February 26, 2009, TRG performed flow testing of the pre-existing soil vapor monitoring wells at the Site prior to verification sampling to ensure that sample collection was possible. Nested vapor probes SVE25, SV27, SV31, and PW4 were determined to yield no vapor flow

0

9

for sample collection and, therefore, replacements for these probes were installed (see Section 5.1 below).

5.1 Replacement Nested Soil Vapor Probe Installation

On March 2, 2009, TRG installed temporary replacement soil vapor probes for locations where sampling was no longer possible (in nested probes SV25, SV27, SV30 through SV35, and passive well PW4). Replacement nested probes were assigned with the same name, with exception of PW4, which was replaced as SV44.

All replacement nested soil vapor probes were advanced using a direct push rig with a disposable drive tip. Once the temporary vapor probes reached the appropriate depth, a Nylaflow sample tube was inserted into the drive rod to the specific depths of the replacement probes. The end of the Nylaflow tubing has a 1.5 inch long air stone filter which allows soil vapor to enter the tubing while limiting the possibility of water or soil intrusion and the top of the Nylaflow tube has a plastic valve to prevent ambient air intrusion. The Nylaflow tubing and valves were sealed at the surface with hydrated bentonite.

After temporary vapor probe placement, a period of at least 20 minutes was allowed to pass before sample collection. This equilibration time allowed subsurface conditions to equilibrate prior to purge volume testing, leak testing, and soil vapor sampling.

5.2 Sub-Slab Soil Vapor Probe Installation

On March 2 and 3, 2009, TRG advanced eight temporary sub-slab soil vapor probes (SV36 through SV43) to one ft bgs beneath the building concrete slab and in the slab vicinity in order to adequately assess soil vapor conditions beneath the foundation at the Site, while minimizing above grade ambient air influences.

Luis Lodrigueza, OCHCA

Verification Sampling Report and Request for Closure

1551 East Orangethorpe Rd., Fullerton, CA

April 27, 2009

Page 9

0

1

All sub-slab soil vapor probes were advanced using a hand-held hammer drill. Once the

temporary vapor probes reached the terminal depth, a Nylaflow sample tube was inserted

hole. The end of the Nylaflow tubing has a 1.5 inch long air stone filter which allows soil

vapor to enter the tubing while limiting the possibility of water or soil intrusion and the top

of the Nylaflow tube has a plastic valve to prevent ambient air intrusion. The Nylaflow

tubing and valves were sealed at the surface with a silicone grease coated rubber stopper to

prevent any leaks.

After sub-slab temporary vapor probe placement, a period of at least 20 minutes was allowed

to pass before sample collection. This equilibration time allowed subsurface conditions to

equilibrate prior to purge volume testing, leak testing, and soil vapor sampling.

5.3 Sample Collection

All verification sampling work was performed according to the February 7, 2005, updated

DTSC "Interim Final – Guidance for the Evaluation and Mitigation of Subsurface Vapor

Intrusion to Indoor Air" (the "DTSC Guidance"), and in the presence of Mr. Lodrigueza of

the OCHCA.

TRG collected a total of 58 soil vapor samples (including purge test and duplicate samples)

from eight sub-slab probes, nine nested probes, one passive well, and 10 vapor extraction

wells at the following locations and depths:

)

Probe ID	Sample Depth(s)			
SV36				
SV37				
SV38				
SV39	1 ft bgs (sub-slab)			
SV40	1 It ogs (sub-slab)			
SV41				
SV42				
SV43				
SV25*				
SV27*				
SV30				
SV31*	5 and 15 ft bgs			
SV32	5 and 15 it bgs			
SV33				
SV34				
SV35				
VEW3	15 and 25 ft bgs			
VEW5				
VEW6				
VEW9				
VEW11				
VEW12				
VEW16				
SV44*	5, 15, and 25 ft bgs			
PW1				
VEW8	15.6.1			
VEW13	— 15 ft bgs			
VEW4	25 ft bgs			

Purge volume tests were performed on probes SV27 and SV37 indicating that three purge volumes produced the highest vapor sample concentrations and, thus, this purge volume was applied to the verification sampling event. Duplicate samples were collected immediately after the original sample from five locations (SV30-15, SV39, SV44-25, VEW5-25, and VEW18-15).

All soil vapor samples were collected at an extraction rate of 200 milliliters per minute (ml/min). A vacuum reading was recorded on field data sheets for each sample. Soil vapor samples were collected in clean syringes or summa canisters. Once collected, the soil vapor

Luis Lodrigueza, OCHCA
Verification Sampling Report

Verification Sampling Report and Request for Closure

1551 East Orangethorpe Rd., Fullerton, CA

April 27, 2009

Page 11

0

1

samples were immediately analyzed on-Site by Jones Environmental, Inc, a state-certified

mobile laboratory.

In addition, Summa canisters were used to collect soil vapor samples from sample points

SV38, SV40, SV44-25, VEW13-25, and VEW3-25. Once collected, the Summa samples

were transported offsite to Chemical & Environmental Laboratories in Santa Fe Springs, CA,

a state-certified laboratory, and analyzed by EPA Method TO-15 to screen the samples for

other potential chemicals of concern, such as vinyl chloride, naphthalene, and benzene.

5.4 Leak Testing

Leak testing was conducted at every soil vapor probe location using a tracer gas (n-

Propanol). A detection of the tracer compound in the subsurface soil vapor sample indicates

that ambient air intrusion occurred. No n-Propanol was detected in any of the samples

collected and analyzed.

5.5 Disposable Equipment and Decontamination Procedures

Non-reusable nylon sample tubing was discarded between sample locations. After each use,

drive rods and other re-usable components were properly decontaminated by a 3-stage wash

and rinse process including a Liquinox rinse and a final distilled water rinse. Clean, dry

tubing was used for sampling.

5.6 Laboratory Analyses

Chain-of custody procedures were followed in transporting samples to the on-Site and

offsite, state certified laboratories. All soil vapor samples for on-Site analysis were analyzed

by EPA Method 8260B full scan for VOCs, including PCE and TCE, since these are the

(

)

historical compounds of concern. All Summa samples for offsite analysis were analyzed by EPA Method TO-15 to screen the samples for other potential chemicals of concern.

6.0 SUMMARY OF VERIFICATION SOIL VAPOR RESULTS

Soil vapor analytical results are summarized in Table 1, and the laboratory analytical reports are provided in Attachment B.

Where detected, PCE concentrations from the total 47 sample locations ranged from 0.068 to 768 ug/L and TCE ranged from 0.029 to 107 ug/L. The highest concentrations of each were present in vapor well VEW3 at 25' (see Figure 2). Other VOCs such as 1,1,1-Trichloroethane, 1,1-Dichloroethene, and Freon-113 were also present in some, but not all, of the soil vapor samples collected. No vinyl chloride was detected in any of the soil vapor samples.

Results from the eight sub-slab soil vapor sample locations (SV36 through SV43), where detected, showed very low to low concentrations of PCE and TCE. The highest concentrations in the sub-slab samples were detected in SV36 (26.7 ug/L PCE, 20.7 ug/L TCE), SV37 (2.59 ug/L PCE, 5.2 ug/L TCE), SV42 (1.1 ug/L PCE), and SV43 (4.66 ug/L PCE), located in the Additional Room Storage area on the north end of the Site, closest to the Johnson Controls property. Remaining sub-slab locations showed PCE and TCE concentrations from less than laboratory reporting limits (0.02 ug/L) to 0.56 ug/L.

Results from the 5 ft bgs soil vapor sample locations (SV25, SV27, SV30 through SV35, SV44, and PW1) also showed very low concentrations of PCE and TCE, with the highest detected concentrations from SV30-5 at 2.62 ug/L for PCE and 1.8 ug/L for TCE.

(

)

Concentrations of PCE and TCE detected in vapor samples from deeper soils (15 and 25 ft bgs) were higher than those collected from shallow soils, but still generally low (below 10 ug/L). Only at areas adjacent to the Jonson Controls property, and adjacent south of the Site's former clarifier location were the concentrations higher: VEW3-15 at 196 ug/L PCE, VEW3-25 at 767 ug/L PCE and 107 ug/L TCE, PW1-25 at 38.8 ug/L PCE, SV44-25 at 17.3 ug/L PCE, VEW16-15 with 20.5 ug/L PCE and 26.9 ug/L TCE, and VEW16-25 at 20.5 ug/L PCE and 26.9 ug/L TCE.

7.0 DISCUSSION AND REQUEST FOR CLOSURE

TRG performed remediation verification sampling at the Site in March 2009 to verify levels of any residual VOC concentrations. Results of the verification sampling indicate that remedial efforts have reduced PCE and TCE vapor concentrations significantly in shallow soils at the Site, especially in the sub-slab and 5 ft bgs locations. PCE and TCE have also been significantly reduced, to a lesser degree, in deeper soils beneath the northern area of the Site near the adjacent Johnson Controls property, known to have historically released chlorinated compounds (including PCE and TCE) into the subsurface. Figures 5 through 11 attached to this report show the PCE mass reduction in soils at the Site, comparing pre-remediation PCE levels with post-remediation verification PCE levels.

The Site has historically operated as a manufacturing/warehouse facility. Future use of this Site is expected to be as zoned. All potential sources of PCE and TCE impact at the Site have been removed and there are currently no activities at the Site. Further, existing reinforced concrete flooring in the Site building serves as an additional barrier for mitigating migration of low residual PCE and TCE vapors from the shallow soils into indoor ambient air.

TRG operated an SVE system at the Site from January 4 to November 28, 2008, resulting in the removal of nearly 50 pounds of PCE and 7 pounds of TCE from subsurface soils. Asymptotic conditions have been achieved since no notable rebound was observed in soil vapor concentrations from verification sampling.

Based on verification sample results, TRG believes that PCE and TCE in the Site's subsurface have been sufficiently remediated for commercial/industrial use low risk closure. TRG, therefore, requests that OCHCA evaluate results of this March 2009 investigation for indoor human health risk analysis and case closure.

If you have questions about this report, please contact our Project Manager for this Site, Alejandro Fuan, at (714) 920-9312 (cell) or via e-mail to fuan@reynolds-group.com. Thank you for your oversight of this case. We look forward to your response.

Sincerely,

(

THE REYNOLDS GROUP

a California corporation by:

. Edward Reynolds, Jr.

California Registered Civil En

Alejandro Fuan Project Manager

Attachments:

Table I -	Summary of Soil	Vapor Sample Results	s March 2009
-----------	-----------------	----------------------	--------------

Table 2 - Historical Summary of Soil Vapor Sample Results

Table 3 - Summary of Operational Soil Vapor Sample Results

Table 4 - Summary of Operational Data and Mass Removal

Figure 1 – Site Location Map

Figure 2 – Site Plot Plan with Verification Sampling Locations

Figure 3 – Cumulative PCE & TCE Removed over Time

Figure 4 – Inlet PCE & TCE Concentration over Time

Figure 5 – Site Plot Plan with Pre-Remediation PCE Soil Vapor Concentration

Contours at 1 and 5 ft bgs.

(

cc:

Figure 6 –	Site Plot Plan with Post-Remediation PCE Soil Vapor Concentration Contours at 1 ft bgs.
Figure 7 –	Site Plot Plan with Updated Post-Remediation PCE Soil Vapor Concentration Contours at 5 ft bgs.
Figure 8 –	Site Plot Plan with Pre-Remediation PCE Soil Vapor Concentration Contours at 15 ft bgs.
Figure 9 –	Site Plot Plan with Updated Post-Remediation PCE Soil Vapor Concentration Contours at 15 ft bgs.
Figure 10 –	Site Plot Plan with Pre-Remediation PCE Soil Vapor Concentration Contours at 25 ft bgs.
Figure 11 –	Site Plot Plan with Updated Post-Remediation PCE Soil Vapor Concentration Contours at 25 ft bgs.
Attachment A Attachment B Attachment C Attachment D	OCHCA Workplan Approval Letter dated February 10, 2009 Laboratory Analytical Report and Chain of Custody Documentation Soil Vapor Concentrations Over Time OCHCA Case Closure Letter, Dated December 15, 1995

Dominick Baione, UNIVERSAL MOLDING EXTRUSION COMPANY James McFadden, GRUBB & ELLIS
John C. Glaser, GLASER, TONSICH & ASSOCIATES, LLC

TABLES

TABLE 1 VERIFICATION VAPOR SAMPLING MARCH 2009 1551 E. ORANGETHORPE AVENUE FULLERTON, CALIFORNIA (Results in Micrograms per Liter – ug/L)

Camala ID								EPA Met	hod 8260B							
Sample ID and Depth (feet)	PCE	TCE	1,1,1-TCA	1,1-DCA	1,2-DCA	1,1-DCE	Cis 1,2- DCE	Trichlor- fluoro- methane	Freon-113	Benzene	Toluene	Ethyl- benzene	Xylenes	1,3,5- trimethyl- benzene	Chloro- form	Tert- Butyl Alcoho
SV42 - 1' 5/11	1.10	0.200	0.170	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.1
SV43 - 1' -	4.66	0.027	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.1
SV44-5	0.428	0.05	<0.02	< 0.02	< 0.02	<0.02	0.240	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV44-15	1.11	0.118	<0.02	< 0.02	< 0.02	< 0.02	0.862	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.1
SV44-25	25.5	7.71	<0.02	0.132	< 0.02	0.787	19.2	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV44-25 (Dup)	17.3	6.40	<0.02	0.101	< 0.02	0.626	16.0	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.1
PW1-5	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
PW1-15	0.168	< 0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.1
PW1-25	38.8	4.07	0.078	< 0.02	< 0.02	1.47	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
VEW3-15	196	8.82	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.1
VEW3-25	767	107	0.771	0.815	0.157	21.5	3.65	<0.02	1.17	0.023	< 0.02	< 0.02	< 0.02	< 0.02	0.467	<0.1
VEW4-25	2.77	0.149	0.272	< 0.02	< 0.02	0.283	< 0.02	0.035	0.258	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1
VEW5-15	0.429	0.024	0.186	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
VEW5-25	0.267	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
VEW5-25 (Dup)	0.303	< 0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.1
VEW6-15	20.1	1.71	0.256	< 0.02	< 0.02	0.268	< 0.02	< 0.02	0.345	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	0.108	<0.1
VEW6-25	8.15	5.60	0.466	< 0.02	< 0.02	7.72	< 0.02	0.077	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
VEW8-15	2.50	0.294	0.313	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
VEW8-15 (Dup)	2.27	0.302	0.225	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.1
VEW9-15	1.58	2.08	0.274	< 0.02	< 0.02	1.99	< 0.02	< 0.02	0.038	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1
VEW9-25	<0.02	< 0.02	0.178	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.1
VEW11-15	8.33	0.685	0.633	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.1
VEW11-25	0.984	3.01	0.138	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.1
VEW12-15	0.184	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.1
VEW12-25	0.918	4.94	3.19	< 0.02	<0.02	852	<0.02	0.230	0.624	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.1
VEW13-15	6.08	0.760	0.375	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.1
VEW16-15	20.5	26.9	51.1	0.546	< 0.02	13.7	<0.02	0.1	7.81	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1
VEW16-25	20.6	36.8	140	0.821	<0.02	12.9	0.14	<0.02	7.67	0.033	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.1

NOTES: All samples were analyzed by EPA Method 8260B Full Scan. Chemicals listed are only those detected during the March 2009 sampling event.

See attached Jones Environmental Laboratory Report dated 3/4/09 for a full listing of chemicals analyzed and for the full names of all chemicals.

No Vinyl Chloride was detected above the laboratory reporting limits.

Samples with no "- #" were collected from approximately 1 ft bgs.

TABLE 1 SUMMARY OF SOIL VAPOR SAMPLE RESULTS MARCH 2009 1551 E. ORANGETHORPE AVENUE FULLERTON, CALIFORNIA (Results in Micrograms per Liter – ug/L)

Comple ID								EPA Met	hod 8260B							
Sample ID and Depth (feet)	PCE	TCE	1,1,1-TCA	1,1-DCA	1,2-DCA	1,1-DCE	Cis 1,2- DCE	Trichlor- fluoro- methane	Freon-113	Benzene	Toluene	Ethyl- benzene	Xylenes	1,3,5- trimethyl- benzene	Chloro- form	Tert- Butyl Alcohol
SV25-5	0.338	<0.02	0.076	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.1
SV25-15	1.11	<0.02	0.144	< 0.02	<0.02	<0.02	< 0.02	< 0.02	0.053	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.1
SV27-5 (1P)	0.816	0.096	0.117	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.1
SV27-5 (3P)	0.745	0.132	0.127	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV27-5 (7P)	0.678	0.108	0.109	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.1
SV27-15 (1P)	0.756	0.050	0.146	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.1
SV27-15 (3P)	0.940	0.063	0.184	< 0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.1
SV27-15 (7P)	0.679	0.050	0.155	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.1
SV30-5	2.62	1.80	1.50	< 0.02	<0.02	0.684	< 0.02	< 0.02	0.158	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1
SV30-15	6.35	5.39	3.48	< 0.02	< 0.02	1.08	< 0.02	< 0.02	0.176	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.1
SV30-15 (Dup)	6.22	4.75	2.86	< 0.02	<0.02	0.962	< 0.02	< 0.02	0.158	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV31-5	<0.02	0.142	0.204	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV31-15	0.068	0.029	0.189	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1
SV32-5	0.132	< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV32-15	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1
SV33-5	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV33-15	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.1
SV34-5	0.276	0.064	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.1
SV34-15	2.68	< 0.02	0.074	< 0.02	<0.02	0.24	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.1
SV35-5	0.198	< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.1
SV35-15	0.156	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.1
SV36 - 1' 19	26.7	20.7	3.93	< 0.02	<0.02	0.433	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	0.190	<0.1
SV37 (1P) -/	2.36	4.77	1.43	< 0.02	<0.02	2.71	< 0.02	<0.02	<0.02	< 0.02	0.704	0.304	0.077	0.031	<0.02	<0.1
SV37 (3P)	2.59	5.20	1.48	<0.02	<0.02	3.04	<0.02	<0.02	<0.02	< 0.02	0.150	<0.02	< 0.02	0.046	< 0.02	<0.1
SV37 (7P)	2.21	4.62	1.50	<0.02	<0.02	2.74	<0.02	<0.02	<0.02	< 0.02	0.179	<0.02	< 0.02	0.030	< 0.02	<0.1
SV38 - /	<0.02	<0.02	0.877	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	0.120
SV39 - 1	0.307	0.547	0.436	<0.02	<0.02	1.16	<0.02	<0.02	0.316	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1
SV39 (Dup)	0.329	0.564	0.433	<0.02	<0.02	1.18	<0.02	0.051	0.316	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1
SV40 - /	0.103	0.100	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1
SV41 - //	0.081	<0.02	0.088	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1

NOTES: All samples were analyzed by EPA Method 8260B Full Scan. Chemicals listed are only those detected during the March 2009 sampling event.

No Vinyl Chloride was detected above the laboratory reporting limits.

See attached Jones Environmental Laboratory Report dated 3/4/09 for a full listing of chemicals analyzed and for the full names of all chemicals.

Samples with no "- #" were collected from approximately 1 ft bgs.

TABLE 2 SUMMARY OF SOIL VAPOR SURVEY SAMPLING RESULTS 1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA

0

SV27-15

2/18/2008

(in micrograms per liter - ug/L) Sample ID **Date Sampled** PCE TCE 1,1-DCE SV1-5 3/9/2007 OS 69.9 17.4 SV1-5 Dil. 3/9/2007 78.8 70.7 18.2 SV2-5 3/9/2007 15.3 11 3.2 SV3-5 3/9/2007 36.4 38.6 25.3 24.2 SV4-5 3/9/2007 39.2 9.1 SV5-5 3/9/2007 35.3 58.2 40.4 SV6-5 3/9/2007 80.3 115.2 65.3 SV7-5 3/9/2007 99.6 101.7 78.3 SV8-5 3/9/2007 7.2 22.6 17.7 SV9-5 3/9/2007 53.7 11.6 6 3/9/2007 222.2 88.8 79.7 SV10-5 SV11-5 3/9/2007 34.9 1.9 <1 SV11-5 Dup 3/9/2007 32 1.8 <1 3/9/2007 50.4 SV12-5 72.8 63.6 3/9/2007 SV13-5 7.4 16.3 7.4 SV14-5 3/9/2007 50.1 98.7 78.2 SV15-5 3/9/2007 1.4 <1 54.4 3/9/2007 SV16-5 <1 <1 <1 SV17-5 3/9/2007 <1 <1 <1 SV18-5 7/30/2007 163.5 120.2 64.3 SV19-5 7/30/2007 190.8 190.2 239.9 SV20-5 7/30/2007 99.3 66.2 164.5 SV21-5 7/30/2007 <1 <1 <1 1.079.40 SV22-5 7/30/2007 710.8 257.6 7/30/2007 984.8 684.9 SV22-5 Dup 232.8 SV23-5 7/30/2007 72.1 80.4 79.8 SV24-5 REFUSAL 2/18/2008 SV24-15 10/16/2007 120 32 30 SV24-15 2/18/2008 REFUSAL 10/16/2007 SV25-5 110 48 100 SV25-5 2/18/2008 REFUSAL SV25-15 180 10/16/2007 100 250 REFUSAL SV25-15 2/18/2008 REFUSAL SV26-5 2/18/2008 SV26-15 10/16/2007 11 2 14 2.2 SV26-15 2/18/2008 1.1 SV27-5 10/16/2007 50 66 88 SV27-5 5.1 3.1 2/18/2008 <1 SV27-15 10/16/2007 74 68 140 2.5

10

<1

TABLE 2 (Continued) SUMMARY OF SOIL VAPOR SURVEY SAMPLING RESULTS 1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA (in micrograms per liter – ug/L)

Sample ID	Date Sampled	PCE	TCE	1,1-DCE	
SV28-5	10/16/2007	1.4	0.4	<0.5	
SV29-5	10/16/2007	22	5.4	0.9	
SV29-5 Dup	10/16/2007	23	5.2	0.8	
SV29-5	2/18/2008	9.6	1.6	<1	
SV29-15	10/16/2007	21	6.3	~ 1	
SV29-15	2/18/2009	13.3	2.9	<1	
SV30-5	10/16/2007	53	71	61	
SV30-5	2/18/2008	14.4	15.7	<1	
SV30-15	10/16/2007	4.8	2.8	0.5	
SV30-15	2/18/2008	21.7	15.7	6.5	
SV31-5	10/16/2007	1.5	2	0.6	
SV31-5	2/18/2008		REFUSAL		
SV31-15	10/16/2007	16	44	53	
SV31-15 Dup	10/16/2007	13	41	53	
SV31-15	2/18/2008	11.9	23.4	9	
SV32-5	10/16/2007	11	38	73	
SV32-5	2/18/2008	2	7.2	<1	
SV32-15	10/16/2007	. 11	32	49	
SV32-15	2/18/2008	2.3	10.5	9.4	
SV32-15 Dup	2/18/2008	2.3	12.4	10.3	
SV33-5	10/16/2007	25	47	55	
SV33-5	2/18/2008	1	<1	<1	
SV33-15	10/16/2007	54	90	140	
SV33-15	2/18/2008	6.7	15.9	<1	
SV34-15	10/16/2007	92	110	460	
SV34-15	10/16/2007	93	72	140	
VEW3-5	10/25/2007	24	29	6.6	
VEW3-15	10/25/2007	240	140	74	
VEW3-25	10/25/2007	210	120	83	
VEW4-5	11/14/2007	21	17	1.7	
VEW4-15	11/14/2007	380	150	86	
/EW4-15 Dup	11/14/2007	360	140	73	
VEW4-25	11/14/2007	470	180	160	
VEW5-5	10/25/2007	23	13	3.8	
VEW5-5	10/30/2007	12	8.2	3.1	
VEW5-15	10/25/2007	19	14	6	
VEW5-15	10/30/2007	19	13	7.8	

TABLE 2 (Continued) SUMMARY OF SOIL VAPOR SURVEY SAMPLING RESULTS 1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA (in micrograms per liter - ug/L)

Sample ID	Date Sampled	PCE	TCE	1,1-DCE
VEW5-25	10/25/2007	12	8.7	13
VEW5-25 Dup	10/25/2007	4.2	3.2	4.9
VEW5-25	10/30/2007	16	17	11
VEW5-60	10/25/2007	170	550	170
VEW5-60	10/30/2007	140	570	150
VEW6-5	11/14/2007	3.7	3.1	<0.5
VEW6-5	2/18/2008	7.3	14.6	<1
VEW6-15	11/14/2007	110	110	17
VEW6-15	2/18/2008	8.2	12.4	<1
VEW6-25	10/30/2007	8.5	9.1	2.5
VEW6-25	11/14/2007	320	370	250
VEW9-5	10/25/2007	39	43	42
VEW9-15	10/25/2007	89	130	170
VEW9-25	10/25/2007	64	69	61
VEW12-5	10/25/2007	30	64	120
VEW12-15	10/25/2007	3.1	8.2	9.8
VEW12-25	10/25/2007	56	110	210
VEW12-60	10/25/2007	10	43	9
PW1-5	11/14/2007	31	6.1	1.1
PW1-15	11/14/2007	21	1.5	<0.5
PW1-25	11/14/2007	4,200	140	55
PW1-60	11/14/2007	70	220	39
PW2-5	12/18/2007	2	8.9	2.5
PW2-5 Dup	12/18/2007	1.5	7.2	2.5
PW2-15	12/17/2007	1.5	7.4	3.1
PW2-15	12/18/2007	6.2	12	6.2
PW2-25	12/18/2007	37	19	20
PW2-60	12/10/2007	75	370	100
PW2-60	12/18/2007	75	370	100
PW3-5	12/10/2007	3.8	1.7	0.6
PW3-5 Dup	12/10/2007	4.3	1.7	0.7
PW3-15	12/10/2007	1.4	1	1.9
PW3-25	12/10/2007	17	2.2	1.6
PW3-60	12/10/2007	<0.1	<0.1	<0.5
PW4-5	12/18/2007	3.8	1.7	0.6
PW4-5 Dup	12/18/2007	4.3	1.7	0.7
PW4-15	12/18/2007	1.4	1	1.9
PW4-25	12/18/2007	17	2.2	1.6
PW4-60	12/18/2007	<0.1	<0.1	< 0.5

TABLE 3
SUMMARY OF OPERATIONAL SOIL VAPOR SAMPLING RESULTS
1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA
(parts per million by volume - ppmv)

Sample ID	Date Sampled	PCE	TCE	1,1-DCE
VEW3-5	2/14/08	10.73	2.23	1.26
V E W 3-3	10/31/08	5.45	0.30	< 0.05
VEW3-15	2/14/08	69.83	18.04	18.40
VE W 3-13	11/10/08	11.13	2.57	1.66
VEW3-25	8/4/08	10.24	1.53	1.74
VEW 3-23	11/10/08	9.06	2.98	3.56
VEW4-5	2/14/08	0.74	<1	<1
VEW4-15	2/14/08	2.35	<1	<1
VEW4-13	11/19/08	0.38	< 0.05	< 0.05
VEW4-25	8/4/08	2.47	0.26	< 0.05
VEW4-23	11/10/08	0.72	0.09	< 0.05
VEW5-5	2/14/08	<1	<1	<1
VEW5-15	2/14/08	<1	<1	<1
VEW5-25	8/4/08	0.19	< 0.05	< 0.05
V E W 3-23	10/21/08	0.23	< 0.05	< 0.05
VEW5-60	11/10/08	3.81	27.75	17.72
VEW6-5	2/14/08	0.74	<1	<1
VENUE 15	2/14/08	2.21	2.79	2.52
VEW6-15	11/10/08	0.48	0.12	< 0.05
VENUC OF	8/4/08	2.10	0.22	< 0.05
VEW6-25	11/10/08	0.14	0.25	< 0.05
	4/2/08	3.74	2.95	0.82
	5/5/08	2.65	0.62	< 0.01
VEW7-15	6/12/08	2.04	0.20	< 0.01
	9/2/08	0.10	0.38	< 0.05
	10/6/08	0.21	< 0.05	< 0.05
	4/2/08	2.02	2.44	0.99
	5/5/08	2.69	0.87	< 0.01
VEXUO 15	6/12/08	4.40	0.81	< 0.01
VEW8-15	9/2/08	0.25	1.79	< 0.05
	10/6/08	2.03	0.21	< 0.05
	11/19/08	0.43	< 0.05	< 0.05
VEW9-5	2/14/08	<1	<1	<1
VENUO 15	2/14/08	0.88	1.86	1.26
VEW9-15	11/10/08	0.80	0.10	< 0.05
VEW9-25	8/4/08	0.15	< 0.05	< 0.05
VEW10-5	11/4/08	< 0.05	< 0.05	< 0.05
	4/2/08	0.22	<0.01	<0.01
/EW10 15	5/5/08	< 0.01	< 0.01	< 0.01
VEW10-15	6/12/08	< 0.01	<0.01	< 0.01
	8/4/08	< 0.05	<0.05	< 0.05
VEW11-15	11/10/08	< 0.05	< 0.05	< 0.05

SUMMARY OF OPERATIONAL SOIL VAPOR SAMPLING RESULTS 1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA

(parts per million by volume - ppmv)

Sample ID	Date Sampled	PCE	TCE	1,1-DCE
	4/2/08	0.14	0.56	< 0.01
VEW11-25	5/5/08	< 0.01	0.32	< 0.01
VEW11-25	6/12/08	< 0.01	<0.01	< 0.01
	9/2/08	0.17	0.25	< 0.05
VEW12-5	2/14/08	2.65	3.91	1.51
	11/4/08	< 0.05	<0.05	< 0.05
VEW12-15	2/14/08	<1	<1	<1
VEW12-25	8/4/08	0.39	0.36	< 0.05
VEW12-60	11/10/08	2.75	21.49	10.1
VEW13-5	11/4/08	< 0.05	< 0.05	< 0.05
	4/2/08	1.96	5.91	2.75
	5/5/08	0.75	2.26	1.65
VEW13-25	6/12/08	0.63	1.67	0.95
	9/2/08	0.99	2.69	1.26
VEW14-5	9/2/08	0.18	< 0.05	< 0.05
72.1.1.	4/2/08	0.61	1.08	<0.01
VEW14-15	5/5/08	0.23	0.27	<0.01
V L W 14-13	6/12/08	0.24	0.34	<0.01
	4/2/08	0.98	1.31	<0.01
	5/5/08	0.70	0.87	<0.01
/FW16 16	6/12/08	0.75	0.88	<0.01
VEW15-15	NO PATRONICA A	AND AND AND ADDRESS OF THE ADDRESS O		
	9/2/08	0.45	0.67	<0.05
	11/10/08	0.33	0.60	<0.05
VEW16-15	11/10/08	0.77	0.59	<0.05
	4/2/08	1.00	0.16	< 0.01
/EW1/ 05	5/5/08 6/2/08	0.28	0.61	<0.01 <0.01
VEW16-25	9/2/08	0.86	0.17	<0.01
	10/21/08	1.62	1.29	<0.05
	1/4/08	18.23	10.42	15.12
	1/11/08	10.14	3.16	1.51
	1/17/08	8.38	1.86	<1
	1/21/08	6.32	1.30	<1
	1/30/08	5.29	1.49	<1
	2/5/08	3.09	<1	<1
	2/14/08	2.94	0.93	<1
Inlet	3/7/08	0.91	1.13	0.76
	3/11/08	0.65	1.09	0.69
	3/20/08	0.65	0.97	<0.01
	3/27/08	0.36	0.38	<0.01
	4/2/08	0.91	1.54	0.55
	4/10/08	0.96	0.88	<0.01
	4/15/08	0.92	0.39	< 0.01

SUMMARY OF OPERATIONAL SOIL VAPOR SAMPLING RESULTS 1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA

(parts per million by volume - ppmv)

Sample ID	Date Sampled	PCE	TCE	1,1-DCE
	4/25/08	1.15	0.67	< 0.01
	5/5/08	1.14	0.27	< 0.01
	5/14/08	0.92	0.22	< 0.01
	5/19/08	0.81	0.45	< 0.01
	5/27/08	0.98	0.31	< 0.01
	6/2/08	1.41	0.73	< 0.01
	6/12/08	1.10	0.28	< 0.01
	6/19/08	0.88	0.38	< 0.01
	6/23/08	0.76	< 0.01	< 0.01
	7/8/08	0.72	<0.01	< 0.01
	7/17/08	0.36	< 0.05	< 0.05
	8/4/08	0.49	< 0.05	< 0.05
	8/11/08	1.75	0.47	< 0.05
Tulat (agut?d)	8/18/08	0.14	< 0.05	< 0.05
Inlet (cont'd)	8/25/08	0.47	< 0.05	< 0.05
	9/2/08	0.72	0.46	< 0.05
	9/11/08	0.91	< 0.05	< 0.05
	9/19/08	0.11	< 0.05	< 0.05
	9/23/08	0.28	< 0.05	< 0.05
	9/30/08	1.12	0.56	< 0.05
	10/6/08	0.86	0.41	< 0.05
	10/13/08	0.27	0.19	< 0.05
	10/15/08	1.16	< 0.05	< 0.05
	10/21/08	0.57	0.86	< 0.05
	10/31/08	1.87	0.30	< 0.05
	11/4/08	< 0.05	< 0.05	< 0.05
	11/10/08	0.15	0.26	< 0.05
	11/19/08	0.40	<0.05	< 0.05
	1/4/08	<1	<1	<1
	1/11/08	<1	<1	<1
	1/17/08	<1	0.93	<1
	1/21/08	<1	<1	<1
	1/30/08	<1	<1	<1
	2/5/08	<1	<1	<1
	2/14/08	<1	<1	<1
	3/7/08	0.51	0.98	1.11
Outlet	3/11/08	<1	<1	0.51
	3/20/08	< 0.01	<0.01	< 0.01
	3/27/08	< 0.01	<0.01	< 0.01
	4/2/08	< 0.01	<0.01	< 0.01
	4/10/08	< 0.01	<0.01	< 0.01
	4/15/08	<0.01	<0.01	<0.01
	4/25/08	<0.01	<0.01	<0.01
	5/5/08	<0.01	<0.01	<0.01
	5/14/08	<0.01	<0.01	<0.01

SUMMARY OF OPERATIONAL SOIL VAPOR SAMPLING RESULTS 1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA

(parts per million by volume - ppmv)

Sample ID	Date Sampled	PCE	TCE	1,1-DCE
	5/19/08	< 0.01	<0.01	< 0.01
	5/27/08	< 0.01	<0.01	< 0.01
	6/2/08	< 0.01	<0.01	< 0.01
	6/12/08	< 0.01	<0.01	< 0.01
	6/19/08	< 0.01	<0.01	< 0.01
	6/23/08	< 0.01	< 0.01	< 0.01
	7/8/08	< 0.01	<0.01	< 0.01
	7/17/08	< 0.05	< 0.05	< 0.05
	8/4/08	< 0.05	< 0.05	< 0.05
	8/11/08	< 0.05	<0.05	< 0.05
	8/18/08	< 0.05	< 0.05	< 0.05
	8/25/08	< 0.05	<0.05	< 0.05
Outlet (cont'd)	9/2/08	< 0.05	<0.05	< 0.05
	9/11/08	< 0.05	<0.05	< 0.05
	9/19/08	< 0.05	< 0.05	< 0.05
	9/23/08	< 0.05	< 0.05	< 0.05
	9/30/08	< 0.05	< 0.05	< 0.05
	10/6/08	0.34	<0.05	< 0.05
	10/13/08	< 0.05	< 0.05	< 0.05
	10/15/08	< 0.05	< 0.05	< 0.05
	10/21/08	< 0.05	< 0.05	< 0.05
	10/31/08	< 0.05	< 0.05	< 0.05
	11/4/08	< 0.05	< 0.05	< 0.05
	11/10/08	< 0.05	< 0.05	< 0.05
	11/19/08	< 0.05	< 0.05	< 0.05
	1/4/08	14.55	10.23	14.87
	1/11/08		Not sampled.	
	1/17/08	<1	<1	<1
	1/21/08	****	Not sampled.	
	1/30/08	<1	<1	<1
	2/5/08	<1	<1	<1
,	2/14/08	<1	<1	<1
	3/7/08	<1	<1	1.44
	3/11/08	<1	<1	0.98
	3/20/08	< 0.01	<0.01	< 0.01
Mid	3/27/08	< 0.01	<0.01	< 0.01
	4/2/08	< 0.01	<0.01	0.69
İ	4/10/08	< 0.01	<0.01	< 0.01
İ	4/15/08	< 0.01	<0.01	< 0.01
	4/25/08	< 0.01	<0.01	< 0.01
İ	5/5/08	< 0.01	<0.01	< 0.01
Ì	5/14/08	< 0.01	<0.01	< 0.01
Ì	5/19/08	<0.01	<0.01	<0.01
1	5/27/08	<0.01	<0.01	<0.01
İ	6/2/08	<0.01	<0.01	<0.01
Ì	6/12/08	<0.01	<0.01	<0.01

SUMMARY OF OPERATIONAL SOIL VAPOR SAMPLING RESULTS 1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA (parts per million by volume - ppmv)

Sample ID	Date Sampled	PCE	TCE	1,1-DCE	
Mid (cont'd)	6/19/08	< 0.01	< 0.01	< 0.01	
	6/23/08	< 0.01	< 0.01	< 0.01	
	7/8/08	< 0.01	<0.01	< 0.01	
	7/17/08	< 0.05	< 0.05	< 0.05	
	8/4/08	0.54	0.39	< 0.05	
	8/11/08	< 0.05	< 0.05	< 0.05	
	8/18/08	< 0.05	0.32	< 0.05	
	8/25/08	< 0.05	0.39	< 0.05	
	9/2/08	0.08	0.55	< 0.05	
	9/11/08	< 0.05	< 0.05	< 0.05	
	9/19/08	< 0.05	< 0.05	< 0.05	
	9/23/08	< 0.05	< 0.05	< 0.05	
	9/30/08	< 0.05	< 0.05	< 0.05	
	10/6/08	< 0.05	< 0.05	< 0.05	
	10/13/08	< 0.05	< 0.05	< 0.05	
	10/15/08	< 0.05	< 0.05	< 0.05	
	10/21/08	< 0.05	< 0.05	< 0.05	
	10/31/08	< 0.05	< 0.05	< 0.05	
	11/4/08	< 0.05	< 0.05	< 0.05	
	11/10/08	< 0.05	< 0.05	< 0.05	
	11/19/08	< 0.05	< 0.05	< 0.05	

Notes:

)

- Samples collected from 1/4/08 through 2/14/08 were reported in mg/L by the laboratory and converted to ppmv.
- Samples collected from 3/7/08 through 7/8/08 were reported in ug/L by the laboratory and converted to ppmv .

TABLE 4
SUMMARY OF OPERATIONAL DATA AND MASS REMOVAL
1551 EAST ORANGETHORPE AVENUE, FULLERTON, CA

Sample ID	Date Sampled	Sample Concentration						Mass Removed		
		PCE ppmv	PCE ug/L	TCE ppmv	TCE ug/L	Pipe Dia. inches	Flow Rate cfm	Cumulative Time hrs	Cumulative PCE lbs	Cumulative TCE lbs
Inlet	1/4/2008	17.971	124	10.182	56	4	88.6	0.0	0.00	0.00
Inlet	1/11/2008	10.000	69	3.091	17	4	133.5	161.8	5.57	0.69
Inlet	1/17/2008	8.261	57	1.818	10	4	222.2	308.1	12.50	1.29
Inlet	1/21/2008	6.232	43	1.273	7	4	247.2	401.1	16.19	1.59
Inlet	1/30/2008	5.217	36	1.455	8	4	185.7	619	21.64	2.20
Inlet	2/5/2008	3.043	21	<rl< td=""><td><rl< td=""><td>4</td><td>269.3</td><td>761</td><td>24.64</td><td>2.20</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>269.3</td><td>761</td><td>24.64</td><td>2.20</td></rl<>	4	269.3	761	24.64	2.20
Inlet	2/14/2008	2.899	20	0.909	5	4	306.8	977.1	29.60	2.82
Inlet	3/7/2008	0.893	6.16	1.105	6.08	4	330.2	1201.9	31.31	3.66
Inlet	3/11/2008	0.642	4.43	1.069	5.88	4	157.3	1298.3	31.56	3.83
Inlet	3/20/2008	0.638	4.40	0.953	5.24	4	130.1	1515.3	32.02	4.11
Inlet	3/27/2008	0.358	2.47	0.375	2.06	4	162.0	1681.2	32.27	4.21
Inlet	4/2/2008	0.900	6.21	1.504	8.27	4	162.0	1823.6	32.80	4.57
Inlet	4/10/2008	0.951	6.56	0.864	4.75	4	121.4	2018.2	33.38	4.78
Inlet	4/15/2008	0.907	6.26	0.385	2.12	4	158.6	2137.9	33.83	4.85
Inlet	4/25/2008	1.132	7.81	0.651	3.58	4	132.9	2371.8	34.73	5.06
Inlet	5/5/2008	1.120	7.73	0.267	1.47	4	160.5	2493.1	35.30	5.11
Inlet	5/14/2008	0.909	6.27	0.211	1.16	4	150.4	2707.9	36.05	5.18
Inlet	5/19/2008	0.797	5.50	0.436	2.40	4	123.0	2828.6	36.36	5.25
Inlet	5/27/2008	0.965	6.66	0.385	2.12	4	123.0	3020.1	36.95	5.34
Inlet	6/2/2008	1.390	9.59	0.716	3.94	4	256.8	3163	38.26	5.61
Inlet	6/12/2008	1.084	7.48	0.278	1.53	4	225.0	3403.2	39.77	5.77
Inlet	6/19/2008	0.865	5.97	0.367	2.02	4	136.1	3569.6	40.28	5.85
Inlet	6/23/2008	0.762	5.26	<rl< td=""><td><rl< td=""><td>4</td><td>229.6</td><td>3667.3</td><td>40.72</td><td>5.85</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>229.6</td><td>3667.3</td><td>40.72</td><td>5.85</td></rl<>	4	229.6	3667.3	40.72	5.85
Inlet	7/3/2008	0.978	6.75	<rl< td=""><td><rl< td=""><td>4</td><td>225.2</td><td>3905.8</td><td>42.07</td><td>5.85</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>225.2</td><td>3905.8</td><td>42.07</td><td>5.85</td></rl<>	4	225.2	3905.8	42.07	5.85
Inlet	7/8/2008	0.710	4.90	<rl< td=""><td><rl< td=""><td>4</td><td>176.0</td><td>4027.1</td><td>42.46</td><td>5.85</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>176.0</td><td>4027.1</td><td>42.46</td><td>5.85</td></rl<>	4	176.0	4027.1	42.46	5.85
Inlet	7/17/2008	0.360	2.48	<rl< td=""><td><rl< td=""><td>4</td><td>172.2</td><td>4243.8</td><td>42.81</td><td>5.85</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>172.2</td><td>4243.8</td><td>42.81</td><td>5.85</td></rl<>	4	172.2	4243.8	42.81	5.85
Inlet	8/4/2008	0.490	3.38	<rl< td=""><td><rl< td=""><td>4</td><td>158.2</td><td>4677.2</td><td>43.68</td><td>5.85</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>158.2</td><td>4677.2</td><td>43.68</td><td>5.85</td></rl<>	4	158.2	4677.2	43.68	5.85
Inlet	8/11/2008	1.750	12.08	0.470	2.59	4	105.2	4844.7	44.47	5.94
Inlet	8/18/2008	0.140	0.97	<rl< td=""><td><rl< td=""><td>4</td><td>167.8</td><td>5014.1</td><td>44.58</td><td>5.94</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>167.8</td><td>5014.1</td><td>44.58</td><td>5.94</td></rl<>	4	167.8	5014.1	44.58	5.94
Inlet	8/25/2008	0.470	3.24	<rl< td=""><td><rl< td=""><td>4</td><td>153.0</td><td>5179.3</td><td>44.88</td><td>5.94</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>153.0</td><td>5179.3</td><td>44.88</td><td>5.94</td></rl<>	4	153.0	5179.3	44.88	5.94
Inlet	9/2/2008	0.720	4.97	0.420	2.31	4	190.2	5373.3	45.57	6.10
Inlet	9/11/2008	0.910	6.28	<rl< td=""><td><rl< td=""><td>4</td><td>111.2</td><td>5585.6</td><td>46.12</td><td>6.10</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>111.2</td><td>5585.6</td><td>46.12</td><td>6.10</td></rl<>	4	111.2	5585.6	46.12	6.10
Inlet	9/19/2008	0.110	0.76	<rl< td=""><td><rl< td=""><td>4</td><td>139.3</td><td>5778.1</td><td>46.20</td><td>6.10</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>139.3</td><td>5778.1</td><td>46.20</td><td>6.10</td></rl<>	4	139.3	5778.1	46.20	6.10
Inlet	9/23/2008	0.280	1.93	<rl< td=""><td><rl< td=""><td>4</td><td>136.6</td><td>5874.7</td><td>46.29</td><td>6.10</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>136.6</td><td>5874.7</td><td>46.29</td><td>6.10</td></rl<>	4	136.6	5874.7	46.29	6.10
Inlet	9/30/2008	1.120	7.73	0.560	3.08	4	106.4	6041.6	46.81	6.20
Inlet	10/6/2008	0.860	5.93	0.410	2.26	4	143.1	6185	47.26	6.29
Inlet	10/13/2008	0.270	1.86	0.190	1.05	4	129.9	6354	47.41	6.33
Inlet	10/15/2008	1.160	8.00	<rl< td=""><td><rl< td=""><td>4</td><td>129.9</td><td>6402</td><td>47.60</td><td>6.33</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>129.9</td><td>6402</td><td>47.60</td><td>6.33</td></rl<>	4	129.9	6402	47.60	6.33
Inlet	10/21/2008	0.570	3.93	0.860	4.73	4	106.6	6526.7	47.80	6.45
Inlet	10/30/2008	1.870	12.90	0.300	1.65	4	107.9	6784.6	49.14	6.53
Inlet	11/4/2008	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>4</td><td>140.0</td><td>6881</td><td>49.14</td><td>6.53</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>4</td><td>140.0</td><td>6881</td><td>49.14</td><td>6.53</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>4</td><td>140.0</td><td>6881</td><td>49.14</td><td>6.53</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>140.0</td><td>6881</td><td>49.14</td><td>6.53</td></rl<>	4	140.0	6881	49.14	6.53
Inlet	11/10/2008	0.150	1.04	0.260	1.43	4	105.1	7013.8	49.19	6.57
Inlet	11/19/2008	0.400	2.76	<rl< td=""><td><rl< td=""><td>4</td><td>87.6</td><td>7230.1</td><td>49.39</td><td>6.57</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>87.6</td><td>7230.1</td><td>49.39</td><td>6.57</td></rl<>	4	87.6	7230.1	49.39	6.57
Inlet	11/26/2008	0.400	2.76	<rl< td=""><td><rl< td=""><td>4</td><td>124.2</td><td>7256.1</td><td>49.42</td><td>6.57</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>124.2</td><td>7256.1</td><td>49.42</td><td>6.57</td></rl<>	4	124.2	7256.1	49.42	6.57
Inlet	11/28/2008	0.400	2.76	<rl< td=""><td><rl< td=""><td>4</td><td>124.3</td><td>7305.5</td><td>49.48</td><td>6.57</td></rl<></td></rl<>	<rl< td=""><td>4</td><td>124.3</td><td>7305.5</td><td>49.48</td><td>6.57</td></rl<>	4	124.3	7305.5	49.48	6.57

FIGURES

100

= 2.400

Figure 3 - Cumulative PCE & TCE Removed over Time

FIGURE 4 - Inlet PCE & TCE Vapor Concentration over Time

.

-

ATTACHMENT A OCHCA WORKPLAN APPROVAL LETTER DATED FEBRUARY 10, 2009

COUNTY OF ORANGE HEALTH CARE AGENCY

PUBLIC HEALTH SERVICES ENVIRONMENTAL HEALTH

JULIETTE A. POULSON, RN, MN DIRECTOR

DAVID M. SOULELES, MPH DEPUTY AGENCY DIRECTOR

RICHARD SANCHEZ, REHS, MPH INTERIM DIRECTOR ENVIRONMENTAL HEALTH

MAILING ADDRESS: 1241 EAST DYER ROAD, SUITE 120 SANTA ANA, CA 92705-5611

> TELEPHONE: (714) 433-6000 FAX: (714) 754-1732 E-MAIL: ehealth@ochca.com

February 10, 2009

Dominick Baione Universal Molding Extrusion Company 9151 East Imperial Highway Downey, CA 90242

Subject:

Revised Work Plan for Verification Sampling

Re:

Fullerton Business Park-North 1551 Orangethorpe Avenue Fullerton, CA 92833 OCHCA Case #07IC015

Dear Mr. Baione:

Orange County Health Care Agency (OCHCA), Environmental Health has reviewed the subject work plan, dated February 4, 2009, submitted by your consultant, The Reynolds Group (TRG), and found it acceptable.

Since this verification event must be witnessed by OCHCA, please advise TRG to notify the undersigned at least 48 hours in advance of the sampling activity.

If you have any questions regarding this matter, please contact the undersigned at (714) 433-6253 or LLodrigueza@ochca.com.

Sincerely,

(Original Signed)
Luis Lodrigueza
Hazardous Waste Specialist
Hazardous Materials Mitigation Section
Environmental Health Division

cc: Kamron Saremi, California Regional Water Quality Control Board- Santa Ana Region Alejandro Fuan, The Reynolds Group, PO Box 1996, Tustin, CA 92781-1996 James R. McFadden, Grubb & Ellis, 500 North State College Suite 100, Orange, CA 92868 John C. Glaser, Glaser, Tonsich & Associates, LLC, 765 West 9th Street, San Pedro, CA 90731

ATTACHMENT B

LABORATORY ANALYTICAL REPORT AND CHAIN OF CUSTODY DOCUMENTATION

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 449-9685

JONES ENVIRONMENTAL

LABORATORY REPORT

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.:

03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

03/02/09-03/03/09 Soil Gas

ANALYSES REQUESTED

1. EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sampling – Soil Gas samples are collected in glass gas-tight syringes equipped with Teflon plungers. Tubing placed in the ground for soil gas sampling is purged three different times as recommended by DTSC/RWQCB regulations. This purge test determines how many purges of the soil gas tubing are needed throughout the project. One, three and seven purge volumes were analyzed to make this determination.

A tracer gas, n-Propanol, was placed at the tubing-surface interface before sampling. This compound is analyzed during the 8260B analytical run to determine if there are surface leaks into the subsurface due to improper installation of the probe. No n-Propanol was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min except when noted differently on the chain of custody record using a gas tight syringe. 1 & 3 purge volumes were used since this purging level gave the highest results for the compound(s) of greatest interest.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Ambient Air Blanks are analyzed every 12 hours as prescribed by the method. In addition, Matrix Spike (MS) and Matrix Spike Duplicates (MSD) are analyzed with each batch of Soil Gas samples. A duplicate sample is analyzed each day of the sampling activity.

All samples were analyzed within 30 minutes of sampling.

Approval:

Steve Jones, Ph.D. Laboratory Manager

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

03/04/09

Report Date: JEL Ref. No.: Client Ref. No.:

B-4865 7115

Attn:

Project

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received: Date Analyzed: 03/02/09-03/03/09

Project Address:

Fullerton Business Park - North

03/02/09-03/03/09

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV27-</u> <u>5</u> <u>1P</u>	<u>SV27-</u> <u>5</u> <u>3P</u>	<u>SV27-</u> <u>5</u> <u>7P</u>	SV27- 15 1P	SV27- 15 3P	Practical Quantitation Limits	<u>Units</u>
Analytes:	3.170		170				
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.: Client Ref. No.: 03/04/09

Report Date:

B-4865 7115

Attn:

(

)

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project **Project Address:** Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed: **Physical State:**

03/02/09-03/03/09

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Samuela IDa	SV27-	<u>SV27-</u>	<u>SV27-</u>	SV27-	SV27-	Practical Quantitation	¥ 1 *4
Sample ID:	<u>5</u> <u>1P</u>	<u>5</u> <u>3P</u>	<u>5</u> 7P	15 1P	<u>15</u> <u>3P</u>	Limits	<u>Units</u>
Analytes:	11.	<u>51</u>	71	11	<u>51</u>		
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	ND	ND	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	0.816	0.745	0.678	0.756	0.940	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	0.117	0.127	0.109	0.146	0.184	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	0.096	0.132	0.108	0.050	0.063	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.: Client Ref. No.:

Report Date:

03/04/09

B-4865 7115

Attn:

0

Al Fuan

Date Sampled:

03/02/09-03/03/09

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09

Dun adiaal

Project

OTION

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	<u>SV27-</u>	<u>SV27-</u>	SV27-	<u>SV27-</u>	<u>SV27-</u>	Practical	
Sample ID:	<u>5</u>	<u>5</u>	<u>5</u>	<u>15</u>	<u>15</u>	Quantitation Limits	Units
	<u>1P</u>	<u>3P</u>	<u>7P</u>	<u>1P</u>	<u>3P</u>	Limits	
Analytes:							
Trichlorofluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limits	
Dibromofluoromethane	99%	96%	95%	94%	98%	60 - 140	
Toluene-d ₈	94%	95%	99%	94%	91%	60 - 140	
4-Bromofluorobenzene	94%	97%	98%	100%	106%	60 - 140	

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.: Client Ref. No.:

Report Date:

03/04/09

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Analyzed:

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	SV27-	SV25-	SV25-	PW1-	SV34-	Practical	
Sample ID:	<u>15</u>	<u>5</u>	<u>15</u>	<u>5</u>	<u>5</u>	Quantitation	Units
	<u>7P</u>					Limits	
Analytes:							
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L

= Not Detected ND

)

0

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Attn:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.: Client Ref. No.: 03/04/09

Report Date:

B-4865 7115

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Analyzed:

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State: Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	SV27- 15 7P	<u>SV25-</u> <u>5</u>	<u>SV25-</u> <u>15</u>	<u>PW1-</u> <u>5</u>	<u>SV34-</u> <u>5</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:	-						
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	ND	0.053	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	0.679	0.338	1.11	ND	0.276	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	0.155	0.076	0.144	ND	ND	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	0.050	ND	ND	ND	0.064	0.020	ug/L

= Not Detected ND

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Analyzed:

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State: Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	SV27- 15 7P	<u>SV25-</u> <u>5</u>	<u>SV25-</u> <u>15</u>	<u>PW1-</u> <u>5</u>	<u>SV34-</u> <u>5</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limits	
Dibromofluoromethane	90%	91%	102%	92%	92%	60 - 140	
Toluene-d ₈	99%	92%	89%	95%	94%	60 - 140	
4-Bromofluorobenzene	102%	100%	110%	101%	101%	60 - 140	

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Attn:

Project

Al Fuan

Fullerton Business Park - North

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Report Date:

03/04/09

JEL Ref. No.:

B-4865

Client Ref. No.:

7115

Date Sampled:

03/02/09-03/03/09

Date Received: Date Analyzed:

03/02/09-03/03/09 03/02/09-03/03/09

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>PW1-</u> <u>15</u>	SV34- 15	<u>SV35-</u> <u>5</u>	PW1- 25	SV35- 15	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	0.246	ND	1.47	ND	0.020	ug/L

= Not Detected ND

0

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address: P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09 B-4865

Client Ref. No.:

7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	PW1-	SV34-	SV35-	PW1-	SV35-	Practical	
Sample ID:	<u>15</u>	<u>15</u>	<u>5</u>	<u>25</u>	<u>15</u>	Quantitation	Units
						Limits	
Analytes:							
cis-1,2-Dichloroethene	ND	ND	ND	1.08	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	ND	ND	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	0.168	2.68	0.198	38.8	0.156	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	ND	0.074	ND	0.078	ND	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	ND	0.430	ND	4.07	ND	0.020	ug/L

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

B-4865

Client Ref. No.:

7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Analyzed:

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	PW1- 15	<u>SV34-</u> <u>15</u>	<u>SV35-</u> <u>5</u>	PW1- 25	SV35- 15	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropy lether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limits	
Dibromofluoromethane	98%	93%	98%	87%	92%	60 - 140	
Toluene-d ₈	89%	92%	91%	97%	95%	60 - 140	
4-Bromofluorobenzene	111%	107%	103%	100%	101%	60 - 140	

= Not Detected ND

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

0

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.:

03/04/09

Report Date:

B-4865

Client Ref. No.:

7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Analyzed:

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW12-</u> <u>15</u>	<u>SV44-</u> <u>5</u>	<u>SV44-</u> <u>15</u>	<u>SV44-</u> <u>25</u>	<u>SV44-</u> <u>25</u> <u>DUP</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:				10010000			.~
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	0.132	0.101	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	ND	ND	0.787	0.626	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09 B-4865

Client Ref. No.:

7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Fullerton Business Park - North

Date Received: Date Analyzed:

03/02/09-03/03/09 03/02/09-03/03/09

Project **Project Address:**

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW12-</u> <u>15</u>	<u>SV44-</u> <u>5</u>	<u>SV44-</u> <u>15</u>	<u>SV44-</u> <u>25</u>	<u>SV44-</u> <u>25</u>	Practical Quantitation	Units
Sample ID:	15	<u> </u>	15	45	DUP	Limits	Units
Analytes:					-		
cis-1,2-Dichloroethene	ND	0.240	0.862	19.2	16.0	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	ND	ND	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	0.184	0.428	1.11	25.5	17.3	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	1.76	ND	ND	ND	ND	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	ND	0.050	0.118	7.71	6.40	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

0

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Analyzed:

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW12-</u> <u>15</u>	<u>SV44-</u> <u>5</u>	<u>SV44-</u> <u>15</u>	<u>SV44-</u> <u>25</u>	<u>SV44-</u> <u>25</u> <u>DUP</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1	1		
Surrogate Recovery: Dibromofluoromethane Toluene-d ₈ 4-Bromofluorobenzene	89% 97% 98%	99% 89% 105%	86% 94% 99%	94% 91% 108%	88% 94% 104%	OC Limits 60 - 140 60 - 140 60 - 140	

C

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: Client Ref. No.: 03/04/09

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09 03/02/09-03/03/09

Project Fullerton Business Park - North **Project Address:** 1551 E. Orangethorpe Ave., Fullerton, CA Date Analyzed: **Physical State:**

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV30-</u> <u>5</u>	<u>VEW12-</u> <u>25</u>	SV30- 15	<u>VEW9-</u> <u>15</u>	SV30- 15 DUP	Practical Quantitation Limits	<u>Units</u>
Analytes:						797 (1997)	
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	0.684	8.52	1.08	1.99	0.962	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Attn:

Al Fuan

Project Project Address:

Fullerton Business Park - North 1551 E. Orangethorpe Ave., Fullerton, CA Report Date:

03/04/09 JEL Ref. No.:

Client Ref. No.:

B-4865 7115

Date Sampled: Date Received: 03/02/09-03/03/09 03/02/09-03/03/09

Date Analyzed:

03/02/09-03/03/09

Physical State: Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV30-</u> <u>5</u>	<u>VEW12-</u> <u>25</u>	<u>SV30-</u> <u>15</u>	<u>VEW9-</u> <u>15</u>	SV30- 15 DUP	Practical Quantitation Limits	<u>Units</u>
Analytes:							
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	0.158	0.624	0.176	0.038	0.158	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	2.62	0.918	6.35	1.58	6.22	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	1.50	3.19	3.48	0.274	2.86	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	1.80	4.94	5.39	2.08	4.75	0.020	ug/L

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: The Reynolds Group

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09 03/02/09-03/03/09

Project Address:

Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed: Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV30-</u> <u>5</u>	<u>VEW12-</u> <u>25</u>	<u>SV30-</u> <u>15</u>	<u>VEW9-</u> <u>15</u>	SV30- 15 DUP	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	0.230	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limits	
Dibromofluoromethane	108%	103%	108%	109%	105%	60 - 140	
Toluene-d ₈	98%	96%	98%	95%	98%	60 - 140	
4-Bromofluorobenzene	100%	98%	99%	97%	98%	60 - 140	

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09 B-4865

Client Ref. No.:

7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project **Project Address:** Fullerton Business Park - North 1551 E. Orangethorpe Ave., Fullerton, CA Date Analyzed: **Physical State:**

03/02/09-03/03/09 Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW5-</u> <u>15</u>	<u>VEW9-</u> <u>25</u>	SV31- 15	<u>VEW5-</u> <u>25</u>	<u>VEW5-</u> <u>25</u> <u>DUP</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L

= Not Detected ND

0

)

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Attn:

Project

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Al Fuan

Fullerton Business Park - North

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Report Date:

03/04/09

JEL Ref. No.: Client Ref. No.: B-4865 7115

Date Sampled:

03/02/09-03/03/09

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID: Analytes:	<u>VEW5-</u> <u>15</u>	<u>VEW9-</u> <u>25</u>	<u>SV31-</u> <u>15</u>	<u>VEW5-</u> <u>25</u>	<u>VEW5-</u> <u>25</u> <u>DUP</u>	Practical Quantitation Limits	<u>Units</u>
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	ND	ND	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	0.429	ND	0.068	0.267	0.303	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	0.186	0.178	0.189	ND	ND	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	0.024	ND	0.029	ND	ND	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: Client Ref. No.: 03/04/09

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09 03/02/09-03/03/09

Project **Project Address:** Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed: **Physical State:**

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW5-</u> <u>15</u>	<u>VEW9-</u> <u>25</u>	SV31- 15	<u>VEW5-</u> <u>25</u>	<u>VEW5-</u> <u>25</u> <u>DUP</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1	1		
Surrogate Recovery: Dibromofluoromethane Toluene-d ₈ 4-Bromofluorobenzene	110% 97% 97%	107% 96% 97%	108% 97% 98%	106% 97% 98%	106% 95% 96%	OC Limits 60 - 140 60 - 140 60 - 140	

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

03/04/09

JEL Ref. No.: Client Ref. No.:

Report Date:

B-4865 7115

Attn:

0

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Project

Fullerton Business Park - North

Physical State:

Soil Gas

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	SV31-	SV32-	<u>SV32-</u>	<u>VEW16-</u>	SV33-	Practical	
Sample ID:	<u>5</u>	<u>5</u>	<u>15</u>	<u>15</u>	<u>5</u>	Quantitation	Units
						Limits	
Analytes:							200
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	0.546	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	ND	ND	13.7	ND	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Attn:

Al Fuan

Project

Fullerton Business Park - North

Project Address: 1551 E. Orangethorpe Ave., Fullerton, CA Report Date:

03/04/09

JEL Ref. No.:

B-4865

Client Ref. No.:

7115

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Date Analyzed:

03/02/09-03/03/09

Physical State: Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV31-</u> <u>5</u>	<u>SV32-</u> <u>5</u>	SV32- 15	<u>VEW16-</u> <u>15</u>	<u>SV33-</u> <u>5</u>	Practical Quantitation	Units
	_	_			_	Limits	
Analytes:							
cis-1,2-Dichloroethene	ND	ND	ND	0.100	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	ND	ND	7.81	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	ND	0.132	ND	20.5	ND	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	0.204	ND	ND	51.1*	ND	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	0.142	ND	ND	26.9	ND	0.020	ug/L

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.:

03/04/09 B-4865

Client Ref. No.:

7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Analyzed:

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV31-</u> <u>5</u>	<u>SV32-</u> <u>5</u>	SV32- 15	<u>VEW16-</u> <u>15</u>	<u>SV33-</u> <u>5</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1/10*	1		
Surrogate Recovery:						QC Limits	
Dibromofluoromethane	104%	102%	112%	102%	110%	60 - 140	
Toluene-d ₈	97%	97%	97%	97%	93%	60 - 140	
4-Bromofluorobenzene	102%	101%	101%	99%	98%	60 - 140	

ND

= Not Detected

= Dilutions for these compound(s); first number of all others

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.:

Report Date:

03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project **Project Address:** Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed: **Physical State:**

03/02/09-03/03/09

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	<u>VEW16-</u>	SV33-	VEW3-	VEW4-	<u>SV37</u>	Practical	
Sample ID:	<u>25</u>	<u>15</u>	<u>25</u>	25	<u>1P</u>	Quantitation	Units
						Limits	
Analytes:							
Benzene	0.033	ND	0.023	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	0.467	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	0.821	ND	0.815	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	0.157	ND	ND	0.020	ug/L
1,1-Dichloroethene	12.9	0.131	21.5	0.283	2.71	0.020	ug/L

0

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: The Reynolds Group

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled: Date Received:

03/02/09-03/03/09 03/02/09-03/03/09

Project

Project Address:

Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed:

03/02/09-03/03/09

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW16-</u> <u>25</u>	SV33- 15	<u>VEW3-</u> <u>25</u>	<u>VEW4-</u> <u>25</u>	SV37 1P	Practical Quantitation Limits	<u>Units</u>
Analytes:							
cis-1,2-Dichloroethene	0.140	ND	3.65	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	0.304	0.020	ug/L
Freon 113	7.67	ND	1.17	0.258	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	20.6	ND	767*	2.77	2.36	0.020	ug/L
Toluene	ND	ND	ND	ND	0.704	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	140*	ND	0.771	0.272	1.43	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	36.8*	ND	107*	0.149	4.77	0.020	ug/L

0

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.:

03/04/09

Client Ref. No.:

B-4865

7115

Attn:

Al Fuan

Date Sampled: Date Received: 03/02/09-03/03/09

Date Analyzed:

03/02/09-03/03/09 03/02/09-03/03/09

Project Address:

Fullerton Business Park – North 1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW16-</u> <u>25</u>	<u>SV33-</u> <u>15</u>	<u>VEW3-</u> <u>25</u>	<u>VEW4-</u> <u>25</u>	<u>SV37</u> <u>1P</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	ND	0.035	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	0.031	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	0.077	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
<u>Dilution Factor</u>	1/10*	1	1/20*	1	1		
Surrogate Recovery:						OC Limits	
Dibromofluoromethane	98%	112%	105%	116%	96%	60 - 140	
Toluene-d ₈	98%	96%	91%	96%	99%	60 - 140	
4-Bromofluorobenzene	97%	103%	96%	99%	101%	60 - 140	

ND

= Not Detected

* = D

= Dilutions for these compound(s); first number of all others

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

P.O. Box 1996 Client Address:

Tustin, CA 92681-1996

Attn:

Al Fuan

Project Project Address:

Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Report Date:

JEL Ref. No.:

B-4865 Client Ref. No.: 7115

Date Sampled:

Date Received:

03/02/09-03/03/09 Date Analyzed:

Physical State:

03/02/09-03/03/09

03/02/09-03/03/09

Soil Gas

03/04/09

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	VEW6-	VEW6-	SV37	VEW3-	SV37	Practical	
Sample ID:	<u>15</u>	<u>25</u>	<u>3P</u>	<u>15</u>	<u>7P</u>	Quantitation	Units
						Limits	
Analytes:							
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	0.108	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	0.268	7.72	3.04	ND	2.74	0.020	ug/L

= Not Detected ND

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.: Client Ref. No.:

Report Date:

03/04/09

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project Address:

Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed: Physical State:

03/02/09-03/03/09

hysical State: Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	VEW6-	VEW6-	<u>SV37</u>	VEW3-	<u>SV37</u>	Practical	
Sample ID:	<u>15</u>	<u>25</u>	<u>3P</u>	<u>15</u>	<u>7P</u>	Quantitation	Units
						Limits	
Analytes:							
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	0.345	ND	ND	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	20.1	8.15	2.59	196	2.21	0.020	ug/L
Toluene	ND	ND	0.150	ND	0.179	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	0.256	0.466	1.48	ND	1.50	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	1.71	5.60	5.20	8.82	4.62	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: Client Ref. No.: 03/04/09

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Project Address:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW6-</u> <u>15</u>	<u>VEW6-</u> <u>25</u>	<u>SV37</u> <u>3P</u>	<u>VEW3-</u> <u>15</u>	<u>SV37</u> <u>7P</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	0.077	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	0.046	ND	0.030	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	20	1		
Surrogate Recovery :						QC Limits	
Dibromofluoromethane	116%	121%	101%	109%	105%	60 - 140	
Toluene-d ₈	93%	94%	96%	95%	95%	60 - 140	
4-Bromofluorobenzene	101%	99%	109%	97%	106%	60 - 140	

= Not Detected ND

(

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Attn:

Al Fuan

Project Address:

Fullerton Business Park – North 1551 E. Orangethorpe Ave., Fullerton, CA Report Date:

03/04/09

JEL Ref. No.: Client Ref. No.: B-4865 7115

Date Sampled:

03/02/09-03/03/09

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW11-</u> <u>15</u>	<u>SV38</u>	<u>VEW11-</u> <u>25</u>	<u>VEW13-</u> <u>15</u>	<u>VEW8-</u> <u>15</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	ND	1.25	ND	ND	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.:

Report Date:

03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Project **Project Address:** Fullerton Business Park - North 1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW11-</u> <u>15</u>	<u>SV38</u>	<u>VEW11-</u> <u>25</u>	<u>VEW13-</u> <u>15</u>	<u>VEW8-</u> <u>15</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	ND	ND	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	8.33	ND	0.984	6.08	2.50	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	0.633	0.877	0.138	0.375	0.313	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	0.685	ND	3.01	0.760	0.294	0.020	ug/L

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09

Project **Project Address:** Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed: **Physical State:**

03/02/09-03/03/09 Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW11-</u> <u>15</u>	<u>SV38</u>	<u>VEW11-</u> <u>25</u>	<u>VEW13-</u> <u>15</u>	<u>VEW8-</u> <u>15</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	0.120	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
<u>Dilution Factor</u>	1	1	1	1	1		
Surrogate Recovery: Dibromofluoromethane Toluene-d ₈ 4-Bromofluorobenzene	108% 93% 101%	110% 96% 98%	98% 99% 107%	112% 92% 101%	104% 95% 97%	OC Limits 60 - 140 60 - 140 60 - 140	

= Not Detected ND

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.: Client Ref. No.:

Report Date:

03/04/09

B-4865 7115

Attn:

0

Al Fuan

Date Sampled:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

03/02/09-03/03/09

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW8-</u> <u>15</u> <u>DUP</u>	<u>SV39</u>	SV39 DUP	<u>SV40</u>	<u>SV42</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Bromodichloromethane	ND	ND	ND	ND	ND	0.020	ug/L
Bromoform	ND	ND	ND	ND	ND	0.020	ug/L
n-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
sec-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Carbon tetrachloride	ND	ND	ND	ND	ND	0.020	ug/L
Chlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Chloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Chloroform	ND	ND	ND	ND	ND	0.020	ug/L
Chloromethane	ND	ND	ND	ND	ND	0.020	ug/L
2-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
4-Chlorotoluene	ND	ND	ND	ND	ND	0.020	ug/L
Dibromochloromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.020	ug/L
Dibromomethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
Dichlorodifluoromethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloroethene	ND	1.16	1.18	ND	ND	0.020	ug/L

ND = Not Detected

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

Client Ref. No.:

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	VEW8-	SV39	<u>SV39</u>	<u>SV40</u>	<u>SV42</u>	Practical	
Sample ID:	<u>15</u>		DUP			Quantitation	Units
	DUP					Limits	
Analytes:							
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.020	ug/L
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.020	ug/L
Ethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Freon 113	ND	0.316	0.316	ND	ND	0.020	ug/L
Hexachlorobutadiene	ND	ND	ND	ND	ND	0.020	ug/L
Isopropylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
4-Isopropyltoluene	ND	ND	ND	ND	ND	0.020	ug/L
Methylene chloride	ND	ND	ND	ND	ND	0.020	ug/L
Naphthalene	ND	ND	ND	ND	ND	0.020	ug/L
n-Propylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Styrene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Tetrachloroethylene	2.27	0.307	0.329	0.103	1.10	0.020	ug/L
Toluene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,1,1-Trichloroethane	0.225	0.436	0.433	ND	0.170	0.020	ug/L
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.020	ug/L
Trichloroethylene	0.302	0.547	0.564	0.100	0.200	0.020	ug/L

ND = Not Detected (

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

P.O. Box 1996 Client Address:

Tustin, CA 92681-1996

Attn:

Project

Al Fuan

Project Address:

Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Report Date:

03/04/09

JEL Ref. No.:

B-4865

Client Ref. No.:

7115

Date Sampled:

03/02/09-03/03/09

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Soil Gas **Physical State:**

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>VEW8-</u> <u>15</u> <u>DUP</u>	SV39	SV39 DUP	<u>SV40</u>	<u>SV42</u>	Practical Quantitation Limits	<u>Units</u>
Analytes:							
Trichlorofluoromethane	ND	ND	0.051	ND	ND	0.020	ug/L
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	0.020	ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.020	ug/L
Vinyl chloride	ND	ND	ND	ND	ND	0.020	ug/L
Xylenes	ND	ND	ND	ND	ND	0.020	ug/L
MTBE	ND	ND	ND	ND	ND	0.020	ug/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	0.020	ug/L
Di-isopropylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-amylmethylether	ND	ND	ND	ND	ND	0.020	ug/L
tert-Butylalcohol	ND	ND	ND	ND	ND	0.100	ug/L
TIC							
n-Propanol	ND	ND	ND	ND	ND	0.020	ug/L
Dilution Factor	1	1	1	1	1		
Surrogate Recovery: Dibromofluoromethane Toluene-d ₈ 4-Bromofluorobenzene	101% 100% 103%	108% 91% 100%	108% 97% 98%	105% 97% 96%	108% 96% 105%	OC Limits 60 - 140 60 - 140 60 - 140	

= Not Detected ND

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

JEL Ref. No.: Client Ref. No.:

Report Date:

03/04/09

B-4865 7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Date Received:

03/02/09-03/03/09 03/02/09-03/03/09

Project **Project Address:** Fullerton Business Park - North

1551 E. Orangethorpe Ave., Fullerton, CA

Date Analyzed: **Physical State:**

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

	SV41	SV43	<u>SV36</u>	<u>Practical</u>
Sample ID:				Quantitation Units
				Limits
Analytes:				
Benzene	ND	ND	ND	0.020 ug/L
Bromobenzene	ND	ND	ND	0.020 ug/L
Bromodichloromethane	ND	ND	ND	0.020 ug/L
Bromoform	ND	ND	ND	0.020 ug/L
n-Butylbenzene	ND	ND	ND	0.020 ug/L
sec-Butylbenzene	ND	ND	ND	0.020 ug/L
tert-Butylbenzene	ND	ND	ND	0.020 ug/L
Carbon tetrachloride	ND	ND	ND	0.020 ug/L
Chlorobenzene	ND	ND	ND	0.020 ug/L
Chloroethane	ND	ND	ND	0.020 ug/L
Chloroform	ND	ND	0.190	0.020 ug/L
Chloromethane	ND	ND	ND	0.020 ug/L
2-Chlorotoluene	ND	ND	ND	0.020 ug/L
4-Chlorotoluene	ND	ND	ND	0.020 ug/L
Dibromochloromethane	ND	ND	ND	0.020 ug/L
1,2-Dibromo-3-chloropropane	ND	ND	ND	0.020 ug/L
1,2-Dibromoethane (EDB)	ND	ND	ND	0.020 ug/L
Dibromomethane	ND	ND	ND	0.020 ug/L
1,2- Dichlorobenzene	ND	ND	ND	0.020 ug/L
1,3-Dichlorobenzene	ND	ND	ND	0.020 ug/L
1,4-Dichlorobenzene	ND	ND	ND	0.020 ug/L
Dichlorodifluoromethane	ND	ND	ND	0.020 ug/L
1,1-Dichloroethane	ND	ND	ND	0.020 ug/L
1,2-Dichloroethane	ND	ND	ND	0.020 ug/L
1,1-Dichloroethene	ND	ND	0.433	0.020 ug/L

= Not Detected ND

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.: 03/04/09

Client Ref. No.:

B-4865 7115

Attn:

(

Al Fuan

Date Sampled:

03/02/09-03/03/09

Fullerton Business Park - North

ND

0.027

Date Received: Date Analyzed: 03/02/09-03/03/09

0.020

ug/L

Project

03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV41</u>	<u>SV43</u>	<u>SV36</u>	Practical Quantitation Limits
Analytes:) ID			
cis-1,2-Dichloroethene	ND	ND	ND	0.020 ug/L
trans-1,2-Dichloroethene	ND	ND	ND	0.020 ug/L
1,2-Dichloropropane	ND	ND	ND	0.020 ug/L
1,3-Dichloropropane	ND	ND	ND	0.020 ug/L
2,2-Dichloropropane	ND	ND	ND	0.020 ug/L
1,1-Dichloropropene	ND	ND	ND	0.020 ug/L
cis-1,3-Dichloropropene	ND	ND	ND	0.020 ug/L
trans-1,3-Dichloropropene	ND	ND	ND	0.020 ug/L
Ethylbenzene	ND	ND	ND	0.020 ug/L
Freon 113	ND	ND	ND	0.020 ug/L
Hexachlorobutadiene	ND	ND	ND	0.020 ug/L
Isopropylbenzene	ND	ND	ND	0.020 ug/L
4-Isopropyltoluene	ND	ND	ND	0.020 ug/L
Methylene chloride	ND	ND	ND	0.020 ug/L
Naphthalene	ND	ND	ND	0.020 ug/L
n-Propylbenzene	ND	ND	ND	0.020 ug/L
Styrene	ND	ND	ND	0.020 ug/L
1,1,1,2-Tetrachloroethane	ND	ND	ND	0.020 ug/L
1,1,2,2-Tetrachloroethane	ND	ND	ND	0.020 ug/L
Tetrachloroethylene	0.081	4.66	26.7	0.020 ug/L
Toluene	ND	ND	ND	0.020 ug/L
1,2,3-Trichlorobenzene	ND	ND	ND	0.020 ug/L
1,2,4-Trichlorobenzene	ND	ND	ND	0.020 ug/L
1,1,1-Trichloroethane	0.088	ND	3.93	0.020 ug/L
1,1,2-Trichloroethane	ND	ND	ND	0.020 ug/L

= Not Detected ND

Trichloroethylene

20.7

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

The Reynolds Group

Client Address:

P.O. Box 1996

Tustin, CA 92681-1996

Report Date: JEL Ref. No.:

03/04/09

Client Ref. No.:

B-4865 7115

Attn:

0

Al Fuan

Date Sampled:

03/02/09-03/03/09

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09 03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

Soil Gas

injuicai state.

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample ID:	<u>SV41</u>	<u>SV43</u>	<u>SV36</u>	Practical Quantitation Limits
Analytes:	1200			
Trichlorofluoromethane	ND	ND	ND	0.020 ug/L
1,2,3-Trichloropropane	ND	ND	ND	0.020 ug/L
1,2,4-Trimethylbenzene	ND	ND	ND	0.020 ug/L
1,3,5-Trimethylbenzene	ND	ND	ND	0.020 ug/L
Vinyl chloride	ND	ND	ND	0.020 ug/L
Xylenes	ND	ND	ND	0.020 ug/L
MTBE	ND	ND	ND	0.020 ug/L
Ethyl-tert-butylether	ND	ND	ND	0.020 ug/L
Di-isopropylether	ND	ND	ND	0.020 ug/L
tert-amylmethylether	ND	ND	ND	0.020 ug/L
tert-Butylalcohol	ND	ND	ND	0.100 ug/L
TIC				
n-Propanol	ND	ND	ND	0.020 ug/L
Dilution Factor	1	1	1	
Surrogate Recovery:				QC Limits
Dibromofluoromethane	91%	97%	97%	60 - 140
Toluene-d ₈	98%	100%	98%	60 - 140
4-Bromofluorobenzene	99%	99%	99%	60 - 140

ND = Not Detected

Jones Environmental, Inc.

Testing Laboratories

P.O. Box 5387 • Fullerton, CA 92838 (714) 449-9937 • FAX (714) 4499685

JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: The Reynolds Group

P.O. Box 1996

Report Date: JEL Ref. No.: 03/04/09 B-4865

Tustin, CA 92681-1996

Client Ref. No.:

7115

Attn:

Al Fuan

Date Sampled:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Received: **Date Analyzed:**

03/02/09-03/03/09 03/02/09-03/03/09

Project Address:

Physical State:

Soil Gas

1551 E. Orangethorpe Ave., Fullerton, CA

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample Spiked: AMBIENT AIR (B1-030209-CHECKS)

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
1,1-Dichloroethylene	86%	93%	8.3%	60 - 140
Benzene	99%	102%	2.4%	60 - 140
Trichloroethylene	90%	93%	3.7%	60 - 140
Toluene	84%	89%	5.8%	60 - 140
Chlorobenzene	104%	110%	5.6%	60 - 140

Sample Spiked: AMBIENT AIR (B2-030209-CHECKS)

<u>Parameter</u>	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
1,1-Dichloroethylene	110%	115%	4.5%	60 - 140
Benzene	95%	97%	2.2%	60 - 140
Trichloroethylene	89%	90%	0.6%	60 - 140
Toluene	91%	89%	2.3%	60 - 140
Chlorobenzene	91%	91%	0.1%	60 - 140

Method Blank = Not Detected

= Matrix Spike MS

= Matrix Spike Duplicate **MSD RPD** = Relative Percent Difference

JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

The Reynolds Group

Report Date: JEL Ref. No.: 03/04/09

Client Address:

P.O. Box 1996

B-4865

Tustin, CA 92681-1996

Client Ref. No.:

7115

Attn:

0

Al Fuan

Date Sampled:

03/02/09-03/03/09

Project

Fullerton Business Park - North

Date Received: Date Analyzed: 03/02/09-03/03/09

Project Address:

1551 E. Orangethorpe Ave., Fullerton, CA

Physical State:

03/02/09-03/03/09

Soil Gas

EPA 8260B- Volatile Organics by GC/MS + Oxygenates

Sample Spiked: AMBIENT AIR (B1-030309-CHECKS)

<u>Parameter</u>	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
1,1-Dichloroethylene	107%	109%	2.0%	60 - 140
Benzene	98%	100%	1.5%	60 - 140
Trichloroethylene	101%	100%	1.1%	60 - 140
Toluene	91%	91%	0.2%	60 - 140
Chlorobenzene	106%	113%	5.7%	60 - 140

Sample Spiked: AMBIENT AIR (B1-030309-CHECKS)

<u>Parameter</u>	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
1,1-Dichloroethylene	92%	95%	3.0%	60 - 140
Benzene	94%	94%	0.1%	60 - 140
Trichloroethylene	100%	100%	0.2%	60 - 140
Toluene	88%	91%	3.3%	60 - 140
Chlorobenzene	88%	91%	3.1%	60 - 140

Method Blank = Not Detected

= Matrix Spike MS

= Matrix Spike Duplicate **MSD** = Relative Percent Difference **RPD**

CHAIN OF CUSTODY

County of Orange Health Care Agency Environmental Health Division 1241 E. Dyer Rd., Ste. 120, Santa Ana, CA 92705 Telephone: (714) 433-6000 / FAX: (714) 754-1768

- 1. ALL SAMPLES ARE TO BE HANDLED AS COURT EVIDENCE, AND ARE TO BE PROPERLY STORED IN A SECURE LOCATION.
- 2. PLEASE WRITE LEGIBLY.

)

3. ATTACH THIS FORM TO THE <u>ORIGINAL</u> REPORT OF THE ANALYTICAL RESULTS AND RETURN THEM TO THIS OFFICE. LABORATORY RESULTS RECEIVED WITHOUT PROPER CHAIN OF CUSTODY DOCUMENTATION WILL NOT BE ACCEPTED.

TO BE COMPLETED BY LABORATORY ANALYST
LAB NO .: B-4865
DATE RECEIVED: 03/03/09
SAMPLE(S) CONDITION (PLEASE CHECK):
CHILLED: COUNTY SEAL(S) INTACT:
CONTAINER IN GOOD CONDITION:
DATE ANALYSIS COMPLETED: 03/03/09
ANALYST: Steve Somes Gary Epper

5.	TO BE COMPLETED BY SAMPLE COLLECTOR
	SITE NAME/ADDRESS: Fullinton Bur Park - N
	1551E. Orangethorpe, Frilaton CA
	DATE OF COLLECTION: 3/03/09
	SAMPLE COLLECTOR/COMPANY: TKG
	Angel Cardos Googs (Steve JE)
	TELEPHONE NO.: (1)4) 730-5397
	HCA REPRESENTATIVE: Luis Lodrigueza

о.	SAMPLE NUMBER	DETERMINATION REQUESTED	SAMPLE DESCRIPTION/COMMENTS	TIME OF COLLECTION
/	VEW-3	EPA Mutter & 840 (VOCS)	SG veril. Samples - substat & various	
/ .	VEN-16	7	Repths (5, 15' 25')	7:31 Km
1	VEW-4	15V-38 1-VEW-10	#.	
/	SV-32	SV-40 NEW-11		8:20
1	SV-33	1 5V-42 / - VEW 144		
1	5V-37/	VEW-5" VEW-156		9:40
5	5V-36	VEW-6 / VEW-7	40,000 10 - 30,000	

	IN	CHAIN OF CUSTODY	
1	SIGNATURE	COMPANY/AGENCY	3/03/09 7:30 My. INCLUSIVE DATES/TIMES
2	SIGNATURE	Jones Environmental, Inc.	03103109 - 13:15
3	SIGNATURE	COMPANY/AGENCY	INCLUSIVE DATES/TIMES
4	SIGNATURE	COMPANY/AGENCY	INCLUSIVE DATES/TIMES
5	SIGNATURE	COMPANY/AGENCY	INCLUSIVE DATES/TIMES
6	SIGNATURE	COMPANY/AGENCY	INCLUSIVE DATES/TIMES

CHAIN OF CUSTODY

County of Orange Health Care Agency Environmental Health Division 1241 E. Dyer Rd., Ste. 120, Santa Ana, CA 92705 Telephone: (714) 433-6000 / FAX: (714) 754-1768

- 1. ALL SAMPLES ARE TO BE HANDLED AS COURT EVIDENCE, AND ARE TO BE PROPERLY STORED IN A SECURE LOCATION.
- 2. PLEASE WRITE LEGIBLY.

0

3. ATTACH THIS FORM TO THE <u>ORIGINAL</u> REPORT OF THE ANALYTICAL RESULTS AND RETURN THEM TO THIS OFFICE. LABORATORY RESULTS RECEIVED WITHOUT PROPER CHAIN OF CUSTODY DOCUMENTATION WILL NOT BE ACCEPTED.

TO BE	COMPLETED BY LABORATORY AN	ALYST	5.	TO BE COMP	PLETED BY SAMPLE C	OLLECTOR
LAB NO.:	B-4865			SITE NAME/ADD	RESS: Fulleton &	Business Park
DATE REC	CEIVED: 03/02/09			1551 E. Orm	gethorpe, gullenton	- CA
SAMPLE(S) CONDITION (PLEASE CHECK):	_		DATE OF COLLEC	TION: 3/02/09	
CHILLE	ED: COUNTY SEAL(S) INTAC	т: 🗸			TOR/COMPANY: 7/	26
CONTA	LINER IN GOOD CONDITION:			argil Ca	Som / Cryg	1 Stene (JE)
DATE AN	ALYSIS COMPLETED: 03/02	109		TELEPHONE NO.:	(JN) 730-5397	
ANALYST	: Skye Jones			HCA REPRESENTA	ATIVE: Luis Lod	rigueza
			ı	La reconstruir de la reconstru		
SAMPLE NUMBER	DETERMINATION REQUESTED		SAME	PLE DESCRIPTION/O	COMMENTS	TIME OF COLLECTION
SV-27	EPAMETHON SHO (VOCS)	Quetdi	5 VOT	V probes &	indoor SV probes	
54-25					arionaleptha.	- Pikitin
PW-1	A SV-31				/	10.55
pw-4/5	V44 / VEW-9				Mark College College (College College	
SV-35						
51-34						1:00 PM
VEW -1	Pr/					
SV-30,						130 PM 2:50
79-1	119	CHAIN OF C	/		1-la 8:00 h	
1	SIGNATURE	OCHER /	PANY/A	Harth 3	INCLUSIVE DATE	3.50 Pm
2	E DYLL L	done Env	ANY/A	mental Inc	103/02/04 -	13:15
3	SIGNATURE	COMP	ANY/A	GENCY	INCLUSIVE DATE	S/TIMES
4	SIGNATURE	COMP	ANY/A	GENCY	INCLUSIVE DATE	S/TIMES
5	SIGNATURE	COMF	ANY/A	GENCY	INCLUSIVE DATES	S/TIMES

COMPANY/AGENCY

INCLUSIVE DATES/TIMES

SIGNATURE

6.

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

Client THE ROTA	lours (onung	Date 3/2	109				, 9	S1 1	Analysi	s Req	uested	, / / JE	EL Project #
Project Name			Client Project	t#				Soll Gas (cc)					$/// _{Pa}$	13-4865
Project Address	20AWETH	unik	Turn Around	Requested: diate Attention	SOIL GAS Purge Vol: 1P 3P	□ 7P		S(A), So		/ /	/ /	/ /	′ / / -	of of the Use Only
Froject Contact	wow, (A	Rush 2	24-48 Hours 72-96 Hours	Purge Rate: NW	cc/min	(S) Slugge (SL), Ann				/	//	Namers	Sample Condition as Received: Chilled yes
	THAN		Mobile Mobile		1	O Mari		3/	/ /					Sealed ≅ryes □ no
Sample ID	Purge Volume		Date	Time	Laboratory Sample Number	Sampl				\angle	\angle	Numb	Remarks/Spec	ial Instructions
5127-5 11	67	1 paraceVu	m 3/2/19	07:38	13-4885-1	56	Х					t	GLASS GAST	IGHT SYMHOF
SV27-5 31	e w	- 3 pineals	m3/2/19	07:56	13-4865.2	SE	χ					l		
SU27-5 78	472	Jennally	un 3/2/19	08.25	19-48053	56	X					(
SV27-15 1	0 92	I power-Vila	3/1/19	08.44	19-48654	56	λ	1	WF	w	W	1		
5017-15 3	P 278	3 punavo	m 3/405	04:38	B-4865-5	56	X	14	SUF	Wi	o o	1		
5/27-15 7	P 647	Trumesoler	4 3/W/9	09:58	13-48656	86	V.	L	WF	Uh	/	(
5125-5	77	1 Puna Van	- 3/2/09	1018	18-4865-7	20	X					١		
5025-15	278	3 revisedo.	~ 3/1/19	10:39	12-4865-8	56	×					1		
PW1-5'	1850	s te 17	3/1/19	11301	13-48-059	56	X		\perp			1		
SYSH-5	177	1 recention			13-4865-10	56	X		\perp			1		
Relinquished by (signature	7		3/2/9	2 Received by	Semm &				Date 31	210	29		Total Number	of Containers
Company			5:30pm	Company	TEI				Time			The o	delivery of samples and Chain of Custody form o	
Relinquished by (signature)			Date	Received by L	aboratory (signature)				Date		100	autho	orization to perform the e under the Terms and	analyses specified
Company			Time	Company					Time			forth	on the back hereof.	

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

Client	0		Date	1.0										/	/ JE	EL Project #
Project Name	SOM	will	11-1	119				,	91	An:	alysis F	Requ	ested	, /		10 Verlet
rioject name			Client Project	#				/	Ses	/	/	/		///	/ -	13-4865
Project Address			T 4		240 1102			Soil /	/-	/ /	' /	/	/ /	/ / /	Pa	ige 2—of
1551 E- ORAN	VGR TH	HURPE ALE	Turn Around I	requestea: liate Attention	SOIL GAS Purge Vol: 1P 13P	□ 7P	/	S/A)		/		/		/ /	1-	ib Use Only
				4-48 Hours	Tracer: windi	Milli-	/	Oon!	3	/	/	/	/	/ /		CATCHES CARD
FULLINOTO	N (A	4		2-96 Hours	Purge Rate:	cc/min	/ 🖫	10	/ /	/ /	' /	′	/ /	liners /		Sample Condition as Received: Chilled yes no
Project Contact AL FUN			Norma Mobile			CC/min	Shudge (8	//					Solution (Solution)		Sealed Tyes on
Sample ID	Purge	Discussion	Date	Time	Laboratory	Nolo V	8	/	/	/	/ /		"ber	6	L	
Sample ID	Volume	Discussion	Date	Time	Sample Number	18,00	\angle		/	_/	_/	_/	1 3/2	Remark	s/Spec	ial Instructions
PW1-15		3 purusilan	3/2/19	11:35	13-4865-11	S@							1	GUASS C	7 زمد	Tota Strange
SV34-15	278	n n	3/2/09	11:59	15-48-65-12	56	¥						١			
SV35-5	77	1 puncue Van	3/2/109	11249	13-4865-13	20	X						l			
pw-25		3 princed in	3/2/09	12:29	13-4865-14	56	¥						1			
5U35-15'	278	ic V	3/2/09	12:51	13-4865-15	26	χ						(
UEW12-15"		~ N 4	3/2/15	13:16	13-4865-16	56	X						1			
544.5	77	1 puncelous	a 3/4/19	1335	13-4865-67	56	X						1			
SV 44-15	405	3 p yme Voun	11	13:55	13-4865-18	26	X						1			
5144-25	501	1 4	3/2/39	14214	V34865-19	56	¥						1			
SHK4.25, DMB	501	K oi	3/1/19	1:4:16	12-4865-20	દુહ	ĸ						l			
Relinquished by (signature)		7 Da	12/3	2 Received by (s	Ignature)				Da 3	te (2-(90			Total N	lumber	of Containers
Company		Tir	:30pm	Company	No.				Tin	ne						the signature on
3 Relinquished by (signature)				A Received by L	phoratory (signature)				Da	5:3 te	Up.	m		hain of Custody		onstitutes analyses specified
				Tieceived by La	by Laboratory (signature)				Da				above	under the Terr	ns and	
Company		Tir	me	Company					Tin	ne			forth	on the back her	reof.	

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

Client		S	Date /											/ JEL Project #
Project Name	۲۷۱۱	Svarp	3/V					/	18	Ar	nalysi /	s Heqi	uested /	1/13-4865
			Glient Project	#				/ ,	100/000					
Project Address		4	Turn Around R	lequested:	SOIL GAS		/	1, 80,1		/ /	/	/	/ /	/ / Page 3 of
1551 E. On	ANGRI	twerr Am	☐ Immedi	iate Attention	Purge Vol: 1P 3P	□ 7P	/	E SM	3/	/	/	' /		/ Lab Use Only
Funda			Rush 24		Tracer:	cc/min	/ 4		3/ 1	/	/			Sample Condition as Received:
Project Contact	100	7	Normal		i dige flate.	/	(3)	19	/ /	/ /	′	/ /	/ /	Chilled upes the
	FUAN		Mobile Mobile	Lab		Mak	None A	3	/				/	Sealed Zayes 🗆 no
Sample ID	Purge Volume	Discussion	Date	Time	Laboratory Sample Number	cc/min		/	//	/ /			Numbo	Sample Condition as Received: Chilled yes no Sealed yes no
SV30-5	67	1 puraellum	3/2/09	14:51	B-4865-21	26	X						1	GUASS GASTURY STRINGS
VRW12-25		3 Rung Van	3/2/09	15.03	B-4865-22	86	V						1	
SV30-15	गर	n ii	3/1/19	15.23	13-4865-23	B	×]	
VFW9-15		. 1	3/2/19	15343	13-4865-24	SG	k						•	
5V30-15 DUR	278	5 4	3/2/19	16:02	13-4865-25	8	X						1	
VEW5-15		vi u	3/2/19	16:20	13-4865-26	દહ	×						1	
VEN 9-25		к ч	3/2/19	15.38	12-4865-27	કહ	¥						ı	
2031-15	Tar	n a	3/2/19	16:59	12-1805-28	66	χ	1	ىك	IF	الد	W	(
VEM 5-25		4	3/2/19	17:18	B-4865 29	50	X						1	
VEWS-25 DUP		<i>9 V</i>	3/2/19	17719	13-4865-30	SO	X.						1	
Reinquisher by (signature)		Da 3	12/05	2 Received by (s	ignature) Em	_				ate 5 (2	-[0	9		Total Number of Containers
Company		Tir	5:30pm	Company	161					me	7.0	on		lelivery of samples and the signature on Chain of Custody form constitutes
Relinquished by (signature)				Laboratory (signature) Date						۲. ۱	authorization to perform the analyses specified above under the Terms and Conditions set			
Company		Tir	me (Company					Tir	me			forth	on the back hereof.

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

The Reynolds Project Name	Gn	Jp	Date 030 Client Project					/.	(50)	An	alysis I	Requ	uested /	//	/	IEL Projec		_
Project Address 1551 E. Crange Kullerton, CA Project Contact Al France	thorp	e Ave.	Rush 2	iate Attention 4-48 Hours 2-96 Hours	SOIL GAS Purge Vol: □ 1P □ 3P Tracer: 1 Proper Purge Rate: 200		Slude (SL) A	Le O Musous (A), Soul				/ /		Rema	′ -	Lab Use Only Sample Cor as Receiver Chilled Sealed	ndition d: yes X no	-
Sample ID	Purge Volume	Discussion	Date	Time	Laboratory Sample Number	Sample		/			/	_	Numbe	Rema	rks/Spe	cial Instruc	tions	
SV31-5	77	1 Purge Vol	03/03/09	17:25	B-486531	56	X						1	Glass	Gusi	hylit	Syring	Ë
SV32-5	67	1 purge Vo	03103100	07:45	B-486532	56	V						(\			,	
5132-15	27-8	3 Purge Va	1 03103109	07:56	13-4965-33	56	1						1	`			*	
VEW16-15		٠ ` n	03/03/09	(946)	13-486534	56	X			\perp			ı	<i>></i>			1	
SV33-5	67	1 Punge Vol	03103109	08.08	B-486535	56	X						1	١			1	
VEW16-25		3 Purye Vo	03/03/09	08:11	B-486536	56	X						1	ı			1	
5033-15	278	, ,		08:25	B-4865-37	56	X						١	1			1	
VEW3-25.			1 03/03/09	08-32	13-4865-38	56	X						l	١			1	
VEW425'		k u	03/02/09	08.49	13-4865-39	56	X						l	(ı	
SU37 IP	\$200	1 Purge Val	03/03/09		B-4865-40	56	X						l	(1	
Relinquished by (signatura)	7	, [3/3/9	Received by (s	signatute)	_			Da 7	te 3	100	i		Tota	l Numbe	r of Contain	ers	
Company TRG)	1	1:30 pm	Company	JEL				Tir.	ne 3:3			this C	elivery of sar	dy form	constitutes	i	
3 Relinquished by (signature)			Date	Received by L	aboratory (signature)				Da	ite			above	rization to pe under the Te on the back h	erms and			
Company		1	Time	Company					Tir	ne			lorur	on the Dack I	101001.			

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

The Reyno	11-1	^	Date	- 1 - 4										/	/ JE	L Project	#
Project Name	105 6	NO JU	Client Proje	3109	-			1	8/	An /	alysis F	leques /	ted /	, /	/ ,	3-486	5
			Glient Proje	ECT #				/	(58) 88 (SE)	/	/ /	/ /	/	///	/		1.
Project Address	,		Turn Aroun	nd Requested:	SOIL GAS		/	80%	4	/ /	' /	/		' / /		ge 5 of	0
1551 E. Oran	rgeth	cree Ave	lann	nediate Attention	SOIL GAS Purge Vol: □ 1P □ 3P □ 7P Tracer: ✓ ◇ ϒΟ Φ • ✓ □ Purge Rate: ~ 2.00 cc/min Laboratory Sample Number			Z	/		/	/	/ /	La	b Use Only		
	ι		Rus	h 24-48 Hours	Tracer: Norop	anol	/ .		13	/	/ /	/ /	/	/ " /		Sample Cond	lition
Fullerton, CA			Rus	h 72-96 Hours	Purge Rate: ~ 200	.cc/min		/	7 /	/ /	' /			ainer		as Received: Chilled 🗀 ye	
Al Fuan			Mot			/3	Sludge	3					/ 5	8		Sealed y	
Sample ID	Purge Volume	Discussion	Date	Time	Laboratory Sample Number	Sample	Ø/0	7	//	/ /	/ /	//	Number	Solite Local Remark	L cs/Spec	ial Instructi	ons
150% 10		3porge vo	1 200	200.67	P WILL HI	56	V							Glass E	j	160	
VEW6-15	\vdash	inde 10	1. 03/03/0	9 09:67	B-4865-41		1	\dashv	\dashv	\dashv	+	╁	+	Cluss C	MIT	MI DY	Virge
VEW6-25		u	4 031031	09:11	B-4465-42	56	À	_		_	4	\perp	'	۲.			4
Su37 3P	600	h	03/03/0	9 09:32	B-4965-43	56	ķ							4			4
NEW3-15		n	, 031031	09 09:35	B-4865-44	56	X						١	ч			4
5V37 7P	1400	7 Purge V	0 0310311	9 0956	B-4865-45	56	X						1	•			7
VEWII-15		3 Runge V	01 0310310	9 10:28	B-4865-46	56	X						i	"			1,
5038	600	3 Purge Vo	3	1 1	B-4865-47	SL	X							ι,			4
VEWII-25		3 PurgeVi	0710310	9 10153	3-4865-48	86	χ							h			4
VEW13-15		V.	11 0310310	9 10:58	B-4865-49	56	X							(,			7
YEN8-15		N i	ं <i>७३</i> १७३१७	9 11:30	B-4865-50	56	X						1	٩			•
Relinquished by (signature)			3/3/0S	2 Received by (signature	X			Da		ارى	1		Total I	Number	of Container	s
Company TO,			Time	Company					Tin	ne			he de	elivery of samp	oles and	the signatu	ire on
1149			1:30pm		JEL					3.7	30			nain of Custod			anaifia d
Relinquished by (signature)			Date	Received by I	Laboratory (signature)				Da	ite		al	bove	ization to perfo under the Terr	ms and		
Company			Time	Company					Tin	ne		fo	orth o	on the back he	reot.		

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

The Reynolds Group Project Name	Date 03103/04 Client Project #	. ,	Analysis Req	uested // JEL Project #
Project Address 1551 E. Orangethorpe Ave. Wileton, in Project Contact Al Frân	Turn Around Requested: Immediate Attention Rush 24-48 Hours Rush 72-96 Hours Normal Mobile Lab	4		Page Lab Use Only Sample Condition as Received: Chilled yes no Sealed yes no
Sample ID Purge Volume Discussion	Date Time	Laboratory Sample Number		Remarks/Special Instructions
VEWS-15 DUP 3PurgeVol	132	13-4868-51561		1 Glass Gashaht Syr.
5 v 39 600 u 9	03/03/09 11:45	18-4865-52 SI X		1 4
SV39 DUP 600 " "		B-4865-33 56 X		1 u
SV40 600 h "	03/03/09 12:06	13-4865-54 S6 X] h
5142 600 "	03/03/09 12:07	13-4865-55 56 1		1 4 7
SV41 600 h	03/03/09/12:45	B-4865-56 S6 X		1 4
5v43 600 " 7	03/03/09 12:55	B-4865-57 S6 X		1 1
5036 600 " 1	03/03/09 13:05	B-4865-58 S6 /1		(b
$\wedge \wedge \wedge \wedge$				
Relinquished by (signature)	Received by (s	Sopature S	Date 313/09	Total Number of Containers
Company TRG			Time 13130	The delivery of samples and the signature on this Chain of Custody form constitutes
Relinquished by (signature)		aboratory (signature)	Date	authorization to perform the analyses specified above under the Terms and Conditions set
Company	ne Company		Time	forth on the back hereof.

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

Project Name	(Gi	wy	Date 3-3 Client Project				/	"Gas (SG)		Analysi	is Req	uested	JEL Project # <u>B4865 B</u> Page
Project Address 1551 E. DRA FULLENTON Project Aontact ANGEL	Css.	THEFE	Rush 2	liate Attention 24-48 Hours 22-96 Hours	SOIL GAS Purge Vol: □ 1P □ 3P Tracer: Purge Rate:(cc/min	"Silvage SI, Aqueous (4)		//		//		Lab Use Only Sample Condition as Received: Chilled yes no Sealed yes no
Sample ID	Purge Volume	Discussion	Date	Time	Laboratory Sample Number	Sample						Numb	Remarks/Special Instructions
RENTAL		7 DAYS	3-3-09									l	Summa 6 LTR
* CUSTOM ET		TO HO	mo c	opper	RETURN								
70 Jan	127	DUVI	nem	ENT A									
	-												
					1								
Relinquished by (signature)			Date 3-3-09	2 Received (s	signature)				ate	3-c	19		Total Number of Containers
Company TRG				Company	TH-			$\overline{}$	īme				lelivery of samples and the signature on Chain of Custody form constitutes
Relinquished by (signature)				Received by L	aboratory (signature)			C	Date			autho	orization to perform the analyses specified e under the Terms and Conditions set
Company			Time	Company				Т	Time			100000000000000000000000000000000000000	on the back hereof.

March 23, 2009

ELAP Certificate No: 2268

Mr. Alejandro Fuan The Reynolds Group 520 West 1st St. Tustin, CA 92781

Project:

7115 Universal

C&E ID:

90303D

Dear Mr. Fuan,

Enclosed is an analytical report for the sample(s) received by Chemical & Environmental Laboratories, Inc. on March 3, 2009, and analyzed as indicated in the chain-of-custody attached.

Unless otherwise noted, no problems were encountered during receiving, preparation and analysis of these samples.

Please call me at (562) 921-8123 if you have any questions regarding this report.

Sincerely,

1

Larry Zhang, Ph.D. Laboratory Director

Lang 3hr

14148 E. Firestone Blvd., Santa Fe Springs, CA 90670 Tel: 562 921-8123, Fax: 562 921-7974

ANALYTICAL REPORT

Page 1 of 2

--- VOLATILE ORGANICS BY EPA TO-15 (GC/MS) ---

Client Name:

The Reynolds Group

Date Sampled: 03/02-03/03/09

M

Project Name: 7115 Universal

Date Received: 03/13/09

U

Date Analyzed: 03/13/09 Date Reported: 03/23/09

Aatrix:	Air
Jnit:	μg/L

SAMPLE ID	N/A	SV44-25'	VEW13-25	VEW3-25		PQL	
C&E LAB ID	MBLK	90303D-1	90303D-2	90303D-3	MDL		
DILUTION FACTOR	1	10	10	50			
Dichlorodifluoromethane (F-12)	ND	O ND N		ND	0.005	0.01	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (F-114)	ND	ND	ND	ND	0.005	0.01	
Chloromethane	ND	ND	ND	ND	0.005	0.01	
Vinyl chloride	ND	ND	ND	ND	0.005	0.01	
Bromomethane	ND	ND	ND	ND	0.005	0.01	
Chloroethane	ND	ND	ND	ND	0.005	0.01	
Trichlorofluoromethane (F-11)	ND			ND	0.005	0.01	
Trichlorotrifluoroethane (F-113)	ND	ND	ND	ND	0.005	0.01	
1,1-Dichloroethene	ND	ND	ND	ND	0.005	0.01	
Methylene chloride	ND	ND	ND	ND	0.005	0.01	
1,1-Dichloroethane	ND	ND	ND	0.77	0.005	0.01	
Trans-1,2-Dichloroethene	ND	0.42	1.52	6.49	0.005	0.01	
cis-1,2-Dichloroethene	ND	3.29	0.09	1.96	0.005	0.01	
Chloroform	ND	ND	ND	ND	0.005	0.01	
1,1,1-Trichloroethane	ND	ND	2.21	ND	0.005	0.01	
Carbon tetrachloride	ND	ND	ND	ND	0.005	0.01	
1,2-Dichloroethane	ND	ND	ND	ND	0.005	0.01	
Benzene	ND	ND	ND	ND	0.005	0.01	
Trichloroethene	ND	0.97	2.98	13.72	0.005	0.01	
1,2-Dichloropropane	ND	ND	ND	ND	0.005	0.01	
Dibromomethane	ND	ND	ND	ND	0.005	0.01	
cis-1,3-Dichloropropene	ND	ND	ND	ND	0.005	0.01	
Toluene	ND	ND	ND	ND	0.005	0.01	
trans-1,3-Dichloropropene	ND	ND	ND	ND	0.005	0.01	
1,1,2-Trichloroethane	ND	ND	ND	ND	0.005	0.01	
Tetrachloroethene	ND	0.42	2.66	20.05	0.005	0.01	
Chlorobenzene	ND	ND	ND	ND	0.005	0.01	
Ethylbenzene	ND	ND	ND	ND	0.005	0.01	
p + m-Xylene	ND	ND	ND	ND	0.005	0.01	
o-Xylene	ND	ND	ND	ND	0.005	0.01	
Styrene	ND	ND	ND	ND	0.005	0.01	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	0.005	0.01	
1,3,5-Trimethylbenzene	ND	ND	ND	ND	0.005	0.01	

To be continued on page 2

ANALYTICAL REPORT

Page 2 of 2

--- VOLATILE ORGANICS BY EPA TO-15 (GC/MS) ---

Client Name:

The Reynolds Group

Date Sampled: 03/02-03/03/09

Matrix:

Project Name: 7115 Universal

Date Received: 03/13/09 Date Analyzed: 03/13/09

Unit:

Air μg/L

Date Reported: 03/23/09

SAMPLE ID	N/A	SV44-25'	VEW13-25	VEW3-25		PQL	
C&E LAB ID	MBLK	90303D-1	90303D-2	90303D-3	MDL		
DILUTION FACTOR	1	10	10	50			
1,2,4-Trimethylbenzene	ND	ND ND		ND	0.005	0.01	
1,3-Dichlorobenzene	ND	ND	ND	ND	0.005	0.01	
1,4-Dichlorobenzene	ND	ND	ND	ND	0.005	0.01	
1,2-Dichlorobenzene	ND	ND	ND	ND	0.005	0.01	
1,2,4-Trichlorobenzene	ND	ND	ND	ND	0.005	0.01	
Hexachloro-1,3-butadiene	ND	ND	ND	ND	0.005	0.01	
Acetonitrile	ND	ND	ND	ND	0.005	0.01	
Acrylonitrile	ND	ND	ND	ND	0.005	0.01	
Allyl Chloride	ND	ND	ND	ND	0.005	0.01	
Benzyl Chloride	ND	ND	ND	ND	0.005	0.01	
Bis(chloroethyl) Ether	ND	ND	ND	ND	0.005	0.01	
1,3-Butadiene	ND	ND	ND	ND	0.005	0.01	
Chloromethyl methyl ether	ND	ND	ND	ND	0.005	0.01	
2-Chloropropene	ND	ND	ND	ND	0.005	0.01	
Ethyl Acrylate	ND	ND	ND	ND	0.005	0.01	
Ethyl Bromide	ND	ND	ND	ND	0.005	0.01	
MEK	ND	ND	ND	ND	0.005	0.01	
2-Propanol	ND	ND	ND	ND	0.005	0.01	
Methyl Methacrylate	ND	ND	ND	ND	0.005	0.01	
MIBK	ND	ND	ND	ND	0.005	0.01	
Carbon Disulfide	ND	ND	ND	ND	0.005	0.01	
2,2,4-Trimethylpentane	ND	ND	ND	ND	0.005	0.01	
Vinyl Acetate	ND	ND	ND	ND	0.005	0.01	
Vinyl Bromide	ND	ND	ND	ND	0.005	0.01	
Tentative Identified Compds	MBLK				MDL	PQL	

Key: ND = Not Detected MDL = Method Detection Limit PQL = Pratical Quantitation Limit J = Trace Conc. Between MDL and PQL

ANALYTICAL REPORT

Page 1 of 2

--- VOLATILE ORGANICS BY EPA TO-15 (GC/MS) ---

Client Name:

The Reynolds Group

Date Sampled: 03/03/09

Matrix:

Project Name: 7115 Universal

Date Received: 03/13/09

Unit:

0

Air

Date Analyzed: 03/13/09

μg/L

Date Reported: 03/23/09

SAMPLE ID	SV40	SV38		PQL
C&E LAB ID	90303D-4	90303D-5	MDL	
DILUTION FACTOR	50	50		
Dichlorodifluoromethane (F-12)	ND	ND	0.005	0.01
,2-Dichloro-1,1,2,2-tetrafluoroethane (F-114)	ND	ND	0.005	0.01
Chloromethane	ND	ND	0.005	0.01
Vinyl chloride	ND	ND	0.005	0.01
Bromomethane	ND	ND	0.005	0.01
Chloroethane	ND	ND	0.005	0.01
Trichlorofluoromethane (F-11)	ND	ND	0.005	0.01
Trichlorotrifluoroethane (F-113)	ND	ND	0.005	0.01
1,1-Dichloroethene	ND	ND	0.005	0.01
Methylene chloride	ND	ND	0.005	0.01
1,1-Dichloroethane	0.31	0.07	0.005	0.01
Trans-1,2-Dichloroethene	1.39	0.53	0.005	0.01
cis-1,2-Dichloroethene	0.56	0.19	0.005	0.01
Chloroform	ND	ND	0.005	0.01
1,1,1-Trichloroethane	0.67	0.72	0.005	0.01
Carbon tetrachloride	ND	ND	0.005	0.01
1,2-Dichloroethane	ND	ND	0.005	0.01
Benzene	ND	ND	0.005	0.01
Trichloroethene	21.30	5.80	0.005	0.01
1,2-Dichloropropane	ND	ND	0.005	0.01
Dibromomethane	ND	ND	0.005	0.01
cis-1,3-Dichloropropene	ND	ND	0.005	0.01
Toluene	ND	ND	0.005	0.01
trans-1,3-Dichloropropene	ND	ND	0.005	0.01
1,1,2-Trichloroethane	ND	ND	0.005	0.01
Tetrachloroethene	41.72	19.88	0.005	0.01
Chlorobenzene	ND	ND	0.005	0.01
Ethylbenzene	ND	ND	0.005	0.01
p + m-Xylene	ND	ND	0.005	0.01
o-Xylene	ND	ND	0.005	0.01
Styrene	ND	ND	0.005	0.01
1,1,2,2-Tetrachloroethane	ND	ND	0.005	0.01
1,3,5-Trimethylbenzene	ND	ND	0.005	0.01

To be continued on page 2

ANALYTICAL REPORT

Page 2 of 2

--- VOLATILE ORGANICS BY EPA TO-15 (GC/MS) ---

Client Name:

The Reynolds Group

Date Sampled: 03/03/09

Project Name: 7115 Universal

Date Received: 03/13/09

Date Analyzed: 03/13/09

Matrix: Unit:

Air $\mu g/L$

Date Reported: 03/23/09

SAMPLE ID	SV40	SV38			
C&E LAB ID	90303D-4	90303D-5	MDL	PQL	
DILUTION FACTOR	50	50			
1,2,4-Trimethylbenzene	ND	ND	0.005	0.01	
1,3-Dichlorobenzene	ND	ND	0.005	0.01	
1,4-Dichlorobenzene	ND	ND	0.005	0.01	
1,2-Dichlorobenzene	ND	ND	0.005	0.01	
1,2,4-Trichlorobenzene	ND	ND	0.005	0.01	
Hexachloro-1,3-butadiene	ND	ND	0.005	0.01	
Acetonitrile	ND	ND	0.005	0.01	
Acrylonitrile	ND	ND	0.005	0.01	
Allyl Chloride	ND	ND	0.005	0.01	
Benzyl Chloride	ND	ND	0.005	0.01	
Bis(chloroethyl) Ether	ND	ND	0.005	0.01	
1,3-Butadiene	ND	ND	0.005	0.01	
Chloromethyl methyl ether	ND	ND	0.005	0.01	
2-Chloropropene	ND	ND	0.005	0.01	
Ethyl Acrylate	ND	ND	0.005	0.01	
Ethyl Bromide	ND	ND	0.005	0.01	
MEK	ND	ND	0.005	0.01	
2-Propanol	ND	ND	0.005	0.01	
Methyl Methacrylate	ND	ND	0.005	0.01	
MIBK	ND	ND	0.005	0.01	
Carbon Disulfide	ND	ND	0.005	0.01	
2,2,4-Trimethylpentane	ND	ND	0.005	0.01	
Vinyl Acetate	ND	ND	0.005	0.01	
Vinyl Bromide	ND	ND	0.005	0.01	
Tentative Identified Compds	MBLK		MDL	PQL	

Key: ND = Not Detected MDL = Method Detection Limit PQL = Pratical Quantitation Limit J = Trace Conc. Between MDL and PQL

CHAIN OF CUSTODY RECORD

C & E Laborato	ries, Inc.										[CAELA	9030	3D	
14148 E. Firestone B	llvd., Santa F	e Springs, C.	A 90670	Tel: (562) 921-	8123		Fax: (50								
Company Name: TRG		Site Address:		1551 F. Mangethors Ave			erve	Page (of /							
Project Manager: Al Fuan Project No./Name: 7115/Universal					Fullerton, CA Cives Hood					Sample Conditions					
Project No./		7115/1	with real	1								_c	hilled _	_ Seals I	ntact
Tel:Fax:			Sampled By:		Cives blood		d	1		Turn Around Time Desired					
SAMPLE ID	SAMPLING DATE	SAMPLING TIME	SAMPLE MATRIX (air/soil/water)	NO. OF CONTAINERS/ TYPE	8015M TPH-G	8015M TPH-D	80218 BTEX MTBE	418.1 TRPH	8260B BTEX OXY	8260B VOC	CAM METALS	8270C SVOC	6010B LEAD	To-	15
SV44-251	3/2/89	4:21	air	1 Suma										×	
VEW 13-25	3/3/09	11:41	1						- Control					7	
VEW 3-25	111	12:06												X	
540		12:43												X	
SV38		1:45		L										X	
		-											The second secon		
		The second second												-	
					Annahari - Annahari									A second	
	The state of the s														
				*						7				4	-
									Service manage of the last						
Relinquished By:	1	Date/Tim	e: 9 2:15	Received By:	Mal	2	Da	te/Time:	3/39		Required EDF Glob		Yes .; T	No	
			Received By:	7		Da	te/Time:	1/	Com	ments:					

ATTACHMENT C SOIL VAPOR CONCENTRATIONS OVER TIME

U

U

ATTACHMENT D

OCHCA CASE CLOSURE LETTER DATED DECEMBER 15, 1995

ENVIRONMENTAL HEALTH DIVISION OBERT E. MERRYMAN, REHS, MPH DEPUTY DIRECTOR

HEALTH CARE AGENCY
PUBLIC HEALTH SERVICES

ENVIRONMENTAL HEALTH DIVISION . 2009 E. EDINGER AVENUE SANTA ANA, CALIFORNIA 92705 (714) 667-3700

December 15, 1995

Carl Ross Red Eagle Properties, Ltd. 2020 Lynx Trail Ontario, CA 91761

Subject:

Case Closure

Re:

Fullerton Business Park North

1551 East Orangethorpe Avenue

Fullerton, CA 92631 O.C.H.C.A. Case # 94IC29

Dear Mr. Ross:

This letter confirms the completion of remedial action at the above referenced site. With the provision that the information provided to this Agency was accurate and representative of existing conditions, it is the position of this office that no further action is required at this time.

This confirmation of completion is limited in scope. It is limited to site conditions made known to this Agency under the above referenced case number. It is based on an evaluation of the health threat presented by the inhalation, ingestion, or dermal absorption of the residual contaminants. In addition, this evaluation considered the present and proposed use of the property. Changes in the present or proposed land use may require further site characterization and/or site mitigation activity.

The presence of chlorinated hydrocarbons and the potential for residual contamination present at this site to cause groundwater contamination had been made known to the Santa Ana Regional Water Quality Control Board. The Regional Board decided that no groundwater investigation will be required for this site at this time.

Carl Ross December 15, 1995 Page 2

Please be advised that this letter does not relieve you of any liability under the California Health and Safety Code or Water Code for past, present or future operations at the site. Nor does it relieve you of the responsibility to clean up existing, additional or previously unidentified conditions at the site which cause or threaten to cause pollution or nuisance or otherwise pose a threat to water quality or public health. It is the property owner's responsibility to notify this Agency of any changes in future contamination findings or site usage.

If you have any questions regarding this matter, please contact Luis Lodrigueza at (714) 667-3717.

Very truly yours,

Karen L. Hodel, R.G.

Program Manager

Hazardous Materials Management Section

Environmental Health Division

KLH:WJD:LL:

cc: Robert Holub, Santa Ana Regional Water Quality Control Board Henry Ames, Converse Consultants - Orange County

CASE CLOSURE REPORT

O.C.H.C.A. Case No.:

94IC29

December 14, 1995

D.B.A:

Fullerton Business Park North 1551 E. Orangethorpe Avenue

Fullerton, CA 92631

R.P.:

Carl Ross/Red Eagle Properties, Ltd.

Current Land Use:

Light industrial/commercial

Adjacent Land Use:

Commercial

Future Land Use:

Light industrial/commercial

Highest Concentrations in Soil (mg/kg)

			_Initia	1		Final			PRGs
Contaminants	15'	20'	25'	Other	15'_	20'	25′	30'	(ppm)
TRPH	3,600	NT	12	12 (40')	NT*	NT	NT	NT	
PCE	84.5	96	92	17.5 (30')	6.2	12.8	25.3	10.6	25
TCE	NT	NT	NT	0.42 (95')	1.1	3.4	1.0	1.2	17
1,1,1 TCA	NT	NT	NT	0.007 (60')	0.59	5.6	19.6	0.9	3,000
1,1 DCE	NT	NT	NT	0.16 (60')	N.D.	3.1	0.89	N.D.	0.082

Deepest Remaining Contamination:	PCE	0.11 ppm	@ 60' bgs	
	TCE	0.16 "	@ 105' bgs	
	1,1 DCE	0.056 "	@ 105' bgs	
	1,1,1 TCA	0.0068 "	@ 60' bgs	

*Not Tested

Soil Types: Interbedded sandy silt, silty sand and silty clay/clayey silt, the latter two

predominating at 15' to 20' bgs

Depth To Groundwater: 115 ft bgs, measured

Case Summary & Closure Rationale

This property was acquired by Red Eagle Properties from Resolution Trust Corporation in May 1994 and was sold to a new owner, Elden County Affaire, a furniture manufacturer, in March 1995.

Two clarifiers, discovered during a 1992 site investigation, were removed in September 1994. These were located in the northeast section of the property, one each at the northern and southern sides of the existing warehouse. Soil samples collected from the excavations showed elevated TRPH and PCE levels in the southern clarifier area; no

Fullerton Business Park Th-Closure Report December 14, 1995 Page 2

)

contamination was detected in soil beneath the clarifier located north of the impacted area. That entire portion of the property is now paved with concrete.

Seven initial, followed by 9 other, soil geoprobes were advanced around the impacted area to define the vertical and lateral extent of contamination. Two other deep borings were also drilled with the intent of installing groundwater monitoring wells. Saturated conditions were encountered at a depth of 115' bgs, but the borings were not advanced to groundwater due to the presence of about 50 ft of soil column above the water table that had not been impacted by PCE—although TCE and DCE were detected in one borehole in alternating silt and clay lenses down to a depth of 105 ft bgs.

The most highly impacted horizon was at the depth of 15' to 25' bgs, and HCA evaluation of the excess lifetime cancer risk (ELCR) for PCE occurrence here indicated unacceptable risk levels. Remediation of the impacted soil was thus undertaken with a soil vapor extraction system which operated for about 3 months from August to November 1995. Pulsing was conducted in mid-November and VOC measurements showed no re-start spiking of contamination; instead, a further decline in VOC concentrations was observed during the first week of operation after the system shutdown.

Confirmation boring was therefore undertaken on December 1, 1995. Three boreholes were installed adjacent to each of the 3 original boreholes that showed the most badly impacted soil, and samples collected at depths that showed the highest levels of PCE. Laboratory analytical results showed that the remediation had significantly reduced soil PCE concentrations by as much as 99% at 15′ bgs, 87% at 20′ bgs and 84% at 25′ bgs in the two most impacted locations. A third, relatively less contaminated spot showed an 11% decrease in PCE at 25′ bgs.

In addition to PCE, the following were also detected in the soil column: TCE, DCE and TCA. The former owner's consultant, Converse Consultants-Orange County, however, felt that—in spite of these degradation products—residual VOC concentrations are at such low levels as to pose any significant health threat, and that no further action is needed at this time.

Re-evaluation of the health risk arising from this residual contamination using HCA's vapor diffusion model showed that the combined ELCR from the carcinogenic chemicals PCE, TCE and DCE is less than 1.0 E-06.

The SARWQCB, after meeting with Red Eagle representatives in November 1995, decided that Red Eagle did not discharge the PCE and other contaminants on to site; and that Red Eagle did not own the property during the time the discharges took place. In view of this, and the acknowledged undertaking by Red Eagle of diligent efforts to mitigate the soil impact by operating a soil vapor extraction system after determining

Fullerton Business Paramorth-Closure Report December 14, 1995 Page 3

that past discharges had impacted the site, the SARWQCB withdrew its earlier request to Red Eagle to investigate groundwater (see SARWQCB letter to Red Eagle dated December 11, 1995). Furthermore, although the SARWQCB is unable "to absolve any current property owner of responsibility for any site investigation or cleanup, considering that the soil impacts at this site have been adequately mitigated, it is not considering issuing an order requiring a groundwater investigation at this time."

In light of the above discussion, it is recommended that this case be closed.

Luis Lodrigueza

Hazardous Waste Specialist

12/15/95

COUNTY OF ORANGE HEALTH CARE AGENCY

PUBLIC HEALTH SERVICES ENVIRONMENTAL HEALTH

DAVID L. RILEY
INTERIM DIRECTOR

DAVID M. SOULELES, MPH DEPUTY AGENCY DIRECTOR

RICHARD SANCHEZ, REHS, MPH DIRECTOR ENVIRONMENTAL HEALTH

> MAILING ADDRESS: 1241 E. DYER ROAD SUITE 120 SANTA ANA, CA 92705-5611

TELEPHONE: (714) 433-6000 FAX: (714) 754-1732 E-MAIL: ehealth@ochca.com

May 6, 2009

Dominick Baione Universal Molding Company 9151 East Imperial Highway Downey, CA 90240

Excellence

Subject:

Verification Sampling Report and Request for Closure

Re:

Fullerton Business Park-North 1551 Orangethorpe Avenue Fullerton, CA 92833 OCHCA Case #07IC015

Dear Mr. Baione:

Orange County Health Care Agency (OCHCA) Environmental Health has reviewed the subject report submitted by The Reynolds Group. The results of this recent shallow soil vapor sampling indicate that subslab solvent vapor concentrations beneath the northernmost storage area are elevated to the extent that the excess cancer risk from inhalation exposure to volatile chemicals, calculated in accordance with the Cal/EPA Department of Toxic Substances Control (DTSC) Vapor Intrusion Guidance Document — Appendix C (December 15, 2004, revised February 7, 2005), exceeds the allowable threshold of one in a million (1.0E-06), with a cumulative hazard index greater than 1.

The elevated vapor intrusion risk and hazard call for some form of mitigation with periodic monitoring and/or remediation through continued soil vapor extraction to reduce the entry of volatile chemicals into building air and/or reduce the subsurface contamination to health-protective levels. It is therefore requested that a mitigation/remediation work plan be submitted to OCHCA. Appropriate guidance is provided in the DTSC Vapor Intrusion Mitigation Advisory (April 2009), available at http://www.dtsc.ca.gov/SiteCleanup.

If you have any questions regarding this matter, please contact the undersigned at (714) 433-6253 or llodrigueza@ochca.com.

Sincerely,

Luis Lodrigueza

Hazardous Waste Specialist

Hazardous Materials Mitigation Section

Environmental Health Division

cc: Kamron Saremi, California Regional Water Quality Control Board- Santa Ana Region

Alejandro Fuan, The Reynolds Group, 520 West First Street, Tustin, CA 92780